Mining Patents + Research Publications to Improve Technology Management: Nano Illustrations

Dr. Alan Porter
Director of Research and Development
Search Technology, Inc.
and
Technology Policy and Assessment Center
Georgia Tech

Outline

- The Technology Management Challenge
- Tech Mining
- Nano Science & Technology Illustrations

How well do we manage technology?

- Cultural differences: Should we bother to plan? To systematically look ahead?
- R&D Peer Review: Faith-based prioritizing
- Strategic Management:
 - Managers overvalue their tacit judgment
 - Reinforce with casual, agreeable expertise
- In sum Amateurish tremendous opportunity to improve

A New Dawn in Managing Technology

- A. Management of Technology (MOT) has been largely *intuitive*
- B. Patent, R&D publication, and business information resources are rich sources of *empirical* intelligence
- C. Need to add "B" to "A" to gain competitive advantage
- D. Goal = Transform MOT (Management of Technology)

Text Mining – The new Perspective

When we talk about a new perspective, we are talking about treating text as data.

Text = data

Tech Mining

Bad:

Only read Science, Technology & Innovation (ST&I) information

Better:

Too much to read! – apply text data mining techniques

Best:

"Tech Mining" redirection -- purposive, targeted decision support for technology management

Answer: Who, What, When, Where?

- Profile R&D Domain(s) of concern:
 - Who is doing what?
 - What topics are heating up (when)?
 - etc.
- Where? Map Relationships: Teams & topical emphases
- When? Derive forecasts
- What? Develop Innovation Indicators
- So what? Draw MOT implications

Illustrative Tech Mining Cases

- Assessing Tech Opportunities ceramics for automotive engines (US Army)
- Plastic molding technologies to assess relative R&D priorities (Combining empirical & expert data -- UFSC)
- 3. Geo-mapping based on text and data mining (M. Persegona)
- 4. Hazardous Substances Data Bank (cross-chemical analyses, National Library of Medicine)
- 5. Fuel Cell exploring (*Tech Mining*)
- 6. Nano Science & Technology Profiling

Search Technology

Technology Information Products: "One-Pagers"

- Design with the Users
- Compile indicators to resolve one technology management issue
- Specialize the answers to fit the pertinent questions
 - Profile a technology
 - Profile an organization
 - Accomplish a particular task (illustration)

Nano R&D: Global to Local

- Selected illustrations
- Brazilian study using Derwent data
- Ongoing Georgia Tech project using publications + patents

Classifying Uses along the Nano Value Chain [by Simone Alencar and Adelaide Antunes, UFRJ

Main IPC [# patents]	Main uses description in the nanopatents	Position along the Nano Value Chain
H01L-Semiconductor Devices; Electric Solid State Devices Not Otherwise Provided [2870]	Electron deviceSemiconductor deviceSolar cell	NanointermediateNanointermediateNano-products
C01B-Non-Metallic Elements; Compounds Thereof [2716]	carbon nanotubefuel cellcatalyst	Nano-raw materialNano-productsNanointermediate
A61K-Preparations For Medical, Dental, Or Toilet Purposes [1863]	 Cancer (treatment, medication) Cosmetics drugs 	Nano-productsNano-productsNano-products
B82B-Nano-Structures; Manufacture Or Treatment Thereof Chemistry [1615]	Carbon nanotubeElectron devicecatalyst	Nano-raw materialNanointermediateNanointermediate

Georgia Tech Project Nano Science & Engineering Profiling

- Searches: 1990-2006 (Summer)
 - Encompassing, modular search strategy
- R&D Publication Abstracts
 - Web of Science ~420,000
 - INSPEC ~300,000+
 - El Compendex ~ 300,000+
- Patent Abstracts ~61,000 patent families
 - MicroPatent
 - INPADOC
 - EKMS Patent Citation Database

Ongoing Process

- Search Iteration; Expert Review; Refinement
- Data Operations: Desktop computer challenges
- VantagePoint [Thomson Data Analyzer]
 Functions
 - Duplicate removal & information consolidation [cross-databases; geographic location data]
 - Exclusions
 - Author/inventor cleaning
 - Author organization/Patent assignee cleaning
- Nano Profiles: Publications + Patents

Zoom In: Profiling Purdue University

- 27 nano-patents
- 2042 nano-publications
- 50 Purdue researchers with 20 or more papers
- 347 with 5 or more papers
- Map showing collaboration among the leading authors (those 24 with 36 or more papers)

	Author (Cleaned)	Publication Year	Subject Category	Keywords (controlled)
T	Top Authors	% from 2003 to 2006	Top 5 Items	Top 6 Items
180	Melloch, MR	4% of 180	PHYSICS, APPLIED [43]; PHYSICS, CONDENSED MATTER [17]; OPTICS [16]; ENGINEERING, ELECTRICAL & ELECTRONIC [16]; MATERIALS SCIENCE, MULTIDISCIPLINARY [4]	semeonductor quantum wells [64]. IIIV semionductors [58]: gallium arcenida [57]. aluminum comeounds [46]: photoefractive materials [28]. multiwave mining [21]
147	Nolte, DD	8% of 147	PHYSICS, APPLIED [23]; OPTICS [18]; ENGINEERING, ELECTRICAL & ELECTRONIC [6]; PHYSICS, CONDENSED MATTER [3]; MATERIALS SCIENCE, MULTIDISCIPLINARY [2]	gemiconductor quantum wells [71]: gallium arsende [42]; IIII-V semiconductors [42]: abuninium compounds [38]; photorefractive materials [37]; multiwave monan [24]
111	Gunshor, RL	0% of 111	PHYSICS, APPLIED [23]; PHYSICS, CONDENSED MATTER [17]; ENGINEERING, ELECTRICAL, & ELECTRONIC [9], CRYSTALLOGRAPHY [7]; MATERIALS SCIENCE, MULTIDISCIPLINARY [5]	tinc comeounds [39]. II-VI remiconductors [39]: molecular beam epitaxial growth [23], semiconductor growth [19]: transmission electron microscope examination of materials [1] semiconductor growth [19]:
102	Webster, TJ	67% of 102	ENGINEERING, RIOMEDICAL [5]: MATERIALS SCIENCE, BIOMATERIALS [4]: CHRMISTRY, MULTIDISCIPLINARY [2]	namostructured materials [48], adhesson [35], bone [32], biomedical materials [28], Calls [27], cellular bookwass [25]
96	Otsuka, N	0% of 96	PHYSICS, APPLIED [26]: ENGINEERING, ELECTRICAL & ELECTRONIC [11]: CRYSTALLOGRAPHY [7]. MATERIALS SCIENCE, MULTIDISCIPLINARY [6]: PHYSICS, CONDENSED MATTER [3]	transmission electron microscope examination of materials [3] in compounds [30]. IIVI semiconductors [30]. IIIV semiconductors [28]. gaillum artende [27]. semiconductor epitusial layers [26]

Summary

- ➤ Too much information to read every item
- ➤ Treat text like Data Mine it for patterns!
- ➤ Patterns speak to innovation prospects: maturation, contextual forces, market prospects
- ➤ VantagePoint [Thomson Data Analyzer] can tell Who, What, When and Where
- ➤ Tech Mining answers managerial questions for faster, better decisions.

Resources

- Tech Mining by Alan Porter and Scott Cunningham, Wiley, 2005
- Technology Intelligence at Air Products by Merrill Brenner, Competitive Intelligence Magazine, May/June, 2005
- See Thomson Scientific Exhibit re: Thomson Data Analyzer or <u>www.theVantagePoint.com</u>
 - the software
 - various "News" on text mining of S&T
- //tpac.gatech.edu
 - Hot Tech & TOA (Technology Opportunities Analysis)
 - papers
- aporter@searchtech.com
- 770-441-1457