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ABSTRACT

A class of finite-difference time-domain (FDTD) schemes is developed, for the solution 

of Maxwell’s equations, that exhibits improved isotropy and dispersion characteristics. This is 

achieved by improving the two-dimensional Laplacian approximation associated with the curl- 

curl operator. The development of this method is based on the observation that in a two- 

dimensional space the Yee-algorithm approximates the aforementioned Laplacian operator via a 

strongly anisotropic 5-point representation. It is demonstrated that with the aid of a transversely 

extended curl operator any 9-point Laplacian can be mapped onto FDTD update equations. Our 

analysis shows that the mapping of an isotropic Laplacian approximation results in an isotropic and 

less dispersive FDTD scheme. The properties of the extended curl are further explored and it is 

proved that a unity Courant number can be achieved without the resulting scheme suffering from 

grid decoupling, an artifact o f staggered-collocated grids. Then it is demonstrated that the above 

methodology is directly applicable in three-dimensions. The properties of the resulting schemes are 

analyzed and it is found that they exhibit the same favorable characteristics as their two-dimensional 

counterparts. Additionally, possible modifications for the extended curl operator are proposed which 

result in higher order performing schemes. First an alternative extended curl operator is derived 

based on a 25-point isotropic Laplacian discretization. It is shown that the corresponding scheme is 

fourth order accurate in space, exhibits isotropy up to sixth order and has a higher Courant number 

than other candidate schemes. Second, the extended-curl operator is combined with fourth order 

time derivatives via a modified equation approach. The resulting scheme is sixth order isotropic and 

exhibits a Courant number that is almost unity. Finally, a rigorous, simple and accurate method

ology is described which allows the optimization of the original extended curl scheme for a given 

grid resolution. Representative numerical simulations are performed that validate the theoretically 

derived results.
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CHAPTER 1

INTRODUCTION

The Yee [1] algorithm is undoubtedly one of the most popular finite-difference approximations 

to Maxwell’s equations, mainly due to its conceptual simplicity and ease to implement. Its main 

characteristic is that Maxwell’s equations are treated in a coupled curl form, and in a leapfrog time- 

stepping manner. In addition the involved first order partial derivatives are approximated via second 

order accurate central finite differences, on a staggered spatio-temporal grid arrangement. Yet, the 

scheme suffers from numerical dispersion as well as phase velocity anisotropy [2], Their deteriorat

ing effects become very pronounced when the problems under study involve long integration times 

or results are required over a wide frequency range. Obviously, the naive approach to mitigate the 

effects of these drawbacks is to use finer grids, however this is not always feasible due to the in

crease of computational cost. Hence, despite its level of maturity the development of FDTD is still 

a topic that attracts a lot of attention, and efforts are made to expand its applicability and improve 

its accuracy.

The inherent dispersion and anisotropy errors of the Yee algorithm have so far stimulated a 

great research effort towards the development of improved FDTD schemes. The latter can be viewed 

as different flavors of the Yee algorithm since they retain many of its characteristics. The reasonable 

trend in order to tackle the dispersion and anisotropy errors is to employ higher order approximation 

to the first order partial derivatives. This path has been successfully followed by many researchers. 

Selectively w e mention the work o f Fang in [3] and Yefet and Petropoulos in [4], where second 

order accurate in time and fourth order accurate in space schemes were presented. Along similar 

lines Zygiridis and Tsiboukis in [5] as well as Sun and Trueman in [6] derived optimized versions of 

the Fang scheme by appropriately modifying the weights of the spatial derivatives’ approximation.
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Also Hadi and Piket-May in [7] attempted an improved (2,4) scheme by applying Ampere’s law 

on several loops. An alternative formulation is the one presented by Young et al. in [8]. The 

proposed scheme combined compact finite-differences [9] for the spatial derivatives, with a Runge- 

Kuta integrator for time advancement. O f particular interest are those FDTD schemes developed 

on hexagonal grids, such as the one presented by Liu in [10] and recently by Xiao et al. in [11], 

which exhibit superior isotropy characteristics and reduced dispersion errors. Furthermore, in [12] 

dispersion error reduction was achieved by introducing artificial anisotropy in the regular FDTD 

update equations. This can be done through appropriate modification of the constitutive parameters 

of the modeled material. The material properties can be tuned and dispersion characteristics can 

be optimized with respect to a single frequency. Finally Wang and Teixeira in a series of papers 

[13-17] gave an elaborate analysis on how to eliminate the dispersion error over a certain frequency 

bandwidth or a particular angular span. Note that a detailed comparison of several low-dispersion 

schemes can be found in [18], while a very informative listing of past and current trends in FDTD 

improvement can be found in [19]. A very detailed overview of higher-order time-domain methods 

has been given by Hesthaven in [20].

The work presented in this dissertation examines the performance of FDTD schemes from a 

different standpoint. This approach is motivated by the fact that Maxwell’s equations essentially 

propagate electromagnetic waves through the curl-curl operator, whose fundamental element is the 

two-dimensional transverse Laplacian operator. The importance of the Laplacian term for accu

rate modeling of wave propagation phenomena has been demonstrated in [21], where it was shown 

that in the case of the 2-D scalar wave equation, a more isotropic Laplacian representation ensures 

highly isotropic wave propagation. Unfortunately, since FDTD works with Maxwell’s equations in 

individual curl form, the existence of this term is masked and hence its importance can be easily 

neglected. This is further supported by the fact that the Yee algorithm, during a time-step, indirectly
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approximates the “hidden” Laplacian term via a strongly anisotropic 5-point representation. As lu

cidly demonstrated in the following Chapter this is solely responsible for the scheme’s poor isotropy 

performance. Consequently, its amelioration is likely if the Laplacian term is approximated more 

accurately. Obviously since the direct mapping of a Laplacian approximation into FDTD updating 

in impossible, the goal is to improve the curl operator in FDTD in such a way that it yields indirectly 

a “good” and “as isotropic as possible” transverse Laplacian. It is demonstrated that with the aid 

of a transversely extended curl operator any 9-point Laplacian can be mapped onto FDTD update 

equations. Our analysis shows that this modified curl operator discretization results in a family of 

schemes with improved dispersion and isotropy characteristics.

The following remarks should be made regarding to the material of this dissertation. The

presented approach should not be confused with those that approximate the 2-D and 3-D Maxwell’s

equations with the 2-D and 3-D scalar wave equations respectively. This is better justified from

the 3-D formulation of our method, where the extended curl operators are defined with respect to

the 3 transverse 2-D Laplacians and not by the 3-D one. Moreover the following guidelines were

followed during the course of this research. First of all we were parsimonious with respect to the

finite-difference stencil extension. Our main objective was to examine what is the best we can

get by modifying, simple and as localized as possible finite-difference approximations. Second,

the optimization of “exotic” stencils was avoided. For these cases there is the ultimate alternative,

pseudospectral methods, which take into account the entire computational domain. In addition,

optimization problems may not be challenging anymore as characteristically John von Neuman had

mentioned: “With four parameters I can fit an elephant, and with five I can make him wiggle his

trunk.” 1 Third, we had to mathematically justify every suggested modification and by no means

treat the scheme as a black box which obeys prescribed rules. Finally, it was desired to preserve 

'Freeman Dyson, “A meeting with Enrico Fermi” (2004) Nature 427, p. 297

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

FDTD simplicity and hence make the resulting schemes easy to program and easy to incorporate 

in existing FDTD codes. Also it should be noted that throughout this document the second order 

accurate leapfrog scheme is adopted for time integration.

The outline of this dissertation is as follows. In Chapter 3 the implementation of an extended 

curl operator in 2-D finite-difference time-domain schemes is described. The appropriate stability 

and dispersion analyses are performed and their improved characteristics are demonstrated. The 

properties of the extended curl are further explored and it is proved that a unity Courant number can 

be achieved without the resulting scheme suffering from grid decoupling.

In Chapter 4 the extended curl operator is implemented for 3-D finite-difference time-domain 

schemes. As before a stability analysis is performed and the dispersion characteristics of the pro

posed scheme are investigated. It is shown that in this case the proposed scheme exhibits the same 

favorable characteristics as its 2-D counterpart.

The ability to achieve higher order performance by utilizing the extended-curl operator is ex

amined in Chapter 5. Hence the mapping of a 25-point isotropic Laplacian on FDTD update equa

tions is demonstrated, and it is shown that the corresponding scheme is fourth order accurate in 

space and exhibits isotropy up to sixth order. In addition a higher order isotropic FDTD scheme 

is described which combines an extended-curl discretization along with artificial dispersion terms, 

realized though weighted third order temporal derivatives.

Finally in Chapter 6 a simple and accurate methodology is described in order to achieve super

isotropic characteristics and eliminate the numerical dispersion of an extended curl operator based 

scheme. The methodology is rigorously developed for both 2-D and 3-D schemes and a detailed 

stability and dispersion analysis of the resulting schemes, is performed.
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CHAPTER 2

AN INTRODUCTION TO THE FINITE-DIFFERENCE TIME-DOMAIN METHOD

2.1. Basic principles

Electromagnetic phenomena on the macroscopic scale are governed by Maxwell’s equations which 

for a linear, isotropic and non-dispersive medium, can be written as:

V x E  =  - P - J f  -  <r*H (2.1)

V  x H  =  dt D  +  J f +  crE (2.2)

where the terms J f 1 and J f  correspond to the impressed magnetic and electric current sources, 

respectively. Notice that Maxwell’s equations in their above form account for the existence of both 

lossy dielectric and magnetic material by including the corresponding conduction current terms, i.e. 

crE and <r*H. If we move the temporal and spatial partially differentiated terms to opposite sides, 

then the system of (2.1) and (2.2) yields the following system of initial value problems:

<9t B  =  —V  x E  -  J™ -  <x*H (2.3)

<9t D  =  V  x  H  -  J '  -  <tE  (2.4)

The above coupled system of equations forms the basis of the FDTD algorithm for solving, in the 

time-domain, three dimensional electromagnetic wave interaction problems. More precisely, the ba

sic concept of FDTD is the solution of (2.3) and (2.4) in a discrete space and time. This requires that 

all temporal and spatial derivatives be approximated numerically using finite differences. Obviously 

the accuracy of the FDTD solutions depends on the accuracy of the finite difference schemes used. 

The latter is determined by calculating the local truncation error of the numerical approximation 

which is usually achieved by Taylor-expanding the appropriate quantities.
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2.2. The Yee grid

In 1966 Kane Yee presented a set of finite difference equations for the system of M axwell’s equa

tions [1]. This set of finite differences exist on a structured grid which consists of orthogonal paral

lelepipeds with a size of A x  x A y  x A z, usually referred to as cells. A unit cell of Yee’s grid along 

with the spatial arrangement of the field components is shown in Figs. 2.1(a) and 2.1(b). Notice that 

the electric and magnetic field components are staggered by a half cell size along each direction. 

Based on this spatial field arrangement Yee constructed centered second order finite difference ap

proximations for the spatial derivatives. For example the partial derivative of E y with respect to x  

is given by:

+  0 ( A x 2) (2.5)

Moreover, a similar staggering is applied in time where the electric field components are com

puted at integer time-steps n A t, while the magnetic field components at (n +  1 /2) A t time steps. 

Hence the partial derivative of E y with respect to t  is given by:

p n + l  _  p n - l
dt E y +1!2 =  - 2 — A t  y -  +  0 ( A t 2) (2.6)

This leapfrog time-stepping is a very desirable property of FDTD mostly because it is non- 

dissipative. For example, consider the case where the gain of an antenna or the scattering inten

sity of some object needs to be calculated. Any artificial dissipation will affect the radiated power, 

and results in erroneous predictions, especially if long integration times are involved. In addition the 

leap-frog scheme is fully explicit and hence the burden of matrix inversion is avoided. Conceptually 

the leapfrog scheme suggests that a “future” field value is predicted by the “present” one, plus the 

appropriate correction-source term. Hence, the field components are computed at each spatial point 

and then moved forward in time, in a time marching scheme also known as “update equations”.

In what follows we derive the update equations for the E z and H z components. From (2.3)
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(i,j,k+ l/2)

(i+ l/2 ,j,k )

X

(a)

(i,j--l/2 ,k + l/2 )

(i+ l/2 ,j+ l/2 ,k )

(b)

Fig. 2.1: Yee grid, (a) E field components, (b) H field components.
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and (2.4) we have:

dt E z =  -  (dx H y -  dy H x -  J ez i -  a  E z )

d t H z =  -  (dy E x -  dx E y - J ™  -  a * H z) 
A1

(2.7)

(2 .8)

Hence, according to the Yee-cell based FDTD conventions described previously, the corresponding 

update equations for these components are given by:

E z
n + 1 a A t

2e E z
i , j , k+1/2 1 +  ^ 4 t  «2e

A t

+

H„
n + l / 2  

i+ l /2 , j , fc + l /2
-  H„

i , j , k+ l /2  1

n + l / 2

i - l / 2 , j , f c + l /2

<7 At 
2s

Aa:

n + l / 2

i , j+ l /2 , f c + l /2
-  H a

n + l / 2

i , j - l / 2 , f c + l / 2

\

A y
7eJZ,l

n + l / 2

i,j ,fe+l/2

/  
(2.9)

H z
n + l / 2 1 -

it* At 
2

i + l / 2 , j + l / 2 , k  1 + IT* At 
2 n

n + l / 2
+

A£

i+ l /2 , j+ l /2 , f c  1 + g* At 
2n

E x ~ Ea
i+ l / 2 , j + l , k

E„
i , j+ l / 2 , k

-  E„

V
A y Aa:

t+1 ,3 + 1 /2 , fc   jY n
z,i i+ l /2 j '+ l /2 , f c

/
(2 . 10)

The material properties involved in the update equations can in general be functions of space; con

sequently they have to be evaluated at the same spatial point as the updated quantity. For example, 

for the values of permittivity related to the E z update equation we have:

 ̂(x, y , z )  =  e ( iA x ,  j A y ,  (k +  1 /2) A z ) (2 .11)

Obviously the update equations for the other field components can be derived in a similar manner. 

The Yee cell is used consistently throughout this dissertation.
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2.3. Numerical dispersion

The discrete nature of the numerical algorithms that solve Maxwell’s equations using finite- 

difference approximations cause dispersion of the simulated wave modes in the computational grid. 

Therefore, in general, the group and phase velocities of a discrete propagating wave in the FDTD 

grid are different from the velocities of the same wave propagating in a continuous medium. The ex

istence of numerical dispersion can severely deteriorate the accuracy of numerical results, and hence 

it must be dealt with. The dispersive nature of the FDTD algorithm and its mitigation is extensively 

analyzed in the following chapters. Hence, for completeness only the most important conclusions 

are mentioned here. A dispersion analysis can be performed by taking the spatio-temporal discrete 

Fourier transform of the the FDTD update equations, which is equivalent to substituting a solution 

of the form

n  _  ^ ( L j n A t —kx i A x —k y j A y —kzkA z}
i,j,k (2 .12)

This procedure yields an equation that relates the numerical wavenumber k to the wave frequency

u>.

1 . /  w A f V  2—— sin — — 
c A t  \  2 J

1 . I kx A x
—  sm -A—  
A x  I 2

+
1 . /  ky A y

—— sm - 2- —  
A y  \ 2

+
1 . ( kz A z

- — sm —- —  
A z  \ 2

(2.13)

where c =  1 / ^f\R is the velocity of light in the medium. Notice that in the case of a very fine 

discretization (A x , A y ,  A z  —► 0), the above equation yields:

*  k l  +  k2y +  k2z
■ c /

(2.14)

which is the well know constraint equation that governs the propagation of a monochromatic wave, 

in a general 3-D medium. Qualitatively this suggests that numerical dispersion can be reduced to 

any desired degree if a fine enough mesh is employed.
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An interesting result can be obtained if we rewrite Maxwell’s equations in matrix form. It is

- I CM T

E °

H °
=  0 (2.15)

where C corresponds to the Fourier transform of the discrete curl operator given by

*2 )  ®

T  corresponds to the Fourier transform of the temporal finite differences, given by

C  = (2.16)

1 . /  u A t \  
T = A i s m \ - T )  I s*3

(2.17)

and [E° H ° ]T =  [E?r Ey E® H® Hy H ^]T . Now, if we multiply the first three equations in (2.15) 

by ^ s i n  sin and ^  sin respectively, and then add the resulting

equations by parts we obtain

1 /  u A t '
—  sm ——- I x 
A t  I 2

x
1 kr A x

sm e E® +  —— sin k y A V  1 771O  1 1 • I  k * A z

  v +  ~Az Sm --------
eE'i

(2.18)

=  0
A x  \ 2 } ~ x ' A  y  " "  \ 2 ~ y ' A z  “ “  \ 2

The above relation is the spatio-temporal Fourier transform of the finite-difference approximation 

to Gauss’ Law, or

d t V - ( e E x , e E y , e E z ) =  0 (2.19)

which essentially proves the flux-conservative nature of the Yee algorithm. In the same manner, one 

can prove the conservation of the magnetic flux.

Although numerical dispersion is introduced individually by the temporal and spatial dis

cretization, the latter also introduces numerical phase velocity anisotropy. This artifact is described 

as the wave speed being a function of the propagation angle. Its effects are demonstrated, for a 2-D
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Fig. 2.2: Numerical phase velocity anisotropy for two different resolutions.

space, in Fig. 2.2. First of all it can be seen that anisotropy can be reduced by increasing the resolu

tion. In addition, we observe that for this case the best approximation to propagation in a continuous 

medium can be achieved along the diagonal of the Yee cell (<f> =  45°). The same can be achieved 

in a 3-D grid for propagation along the long diagonal of the Yee cell, that is (4>, 9) =  (45°, 54.7°). 

This behavior is due to the fact that the order of the temporal and spatial errors are the same and 

opposite in sign. Hence, they can cancel each other and given that the maximum allowable time-step 

(Courant limit) is used, the numerical wave speed can acquire its physical value. This is a very fa

vorable characteristic of the Yee algorithm which is not observed in alternative schemes with spatial 

accuracy higher than the temporal one. In these cases maximum accuracy at a specific frequency 

can be achieved if time-steps smaller than the Courant limit are used.

Furthermore, dispersion analysis reveals that the Yee grid exhibits characteristics similar to 

that of a low-pass filter, whose response is controlled by the grid sampling resolution N \  =  X/ Ax .  

Therefore, to obtain un-disrupted pulse propagation in an FDTD grid, its resolution should be cho

sen so that the frequencies of interest are far below this equivalent filter’s cutoff frequency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

2.4. Stability

Finite difference schemes require the time increment A t to have a specific bound relative to the spa

tial discretization A x , A y  and A z. This bound is necessary to prevent numerical instability, which 

is an undesirable property of explicit schemes. The derivation of this bound for Yee’s algorithm is 

based on the von-Neumann stability criterion which results in the following condition:

A t <  — ; ■ 1 ■ - -  ■ (2.20)
~ ~  m m  ~

V A x 2 A y 2 A z 2

This is usually referred to as the Courant-Friedrichs-Lewy (CFL) condition. Qualitatively the above 

condition suggests that in order to ensure the stability of a numerical scheme, for a hyperbolic

equation, the temporal and spatial discretization have to be properly chosen so that we can “catch

the fastest possible propagating wave”1 in the grid. It has to be mentioned that the CFL condition is 

a necessary condition but not a sufficient one.

2.5. Absorbing boundary conditions

The most important issue for the development of the FDTD method has been the efficient and accu

rate solution of electromagnetic problems in unbounded regions. This requires the truncation of the 

computational domain with appropriate absorbing boundary conditions (ABCs). These boundary 

conditions should allow the outward propagating waves to exit the computational domain with as 

little reflection as possible. Several ABC schemes have been proposed so far with the one intro

duced by Mur [22] being the most popular and the most widely used. However these ABCs exhibit 

best performance only in particular cases, for instance if the impinging wave is plane and is incident

normally upon the ABC boundary.

'A tactic initially introduced in the area of surfing!
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V

Fig. 2.3: TMz wave impinging on a PML half space.

A major breakthrough in this area was made by Berenger when he introduced a highly effective 

ABC, usually referred to as the perfectly matched layer (PML) [23], [24], [25], The PML can be 

considered as a lossy material that surrounds the problem domain, and it can absorb electromagnetic 

waves at arbitrary frequencies and angles of incidence. This is achieved by splitting the field com

ponents, inside the PML, into two orthogonal subcomponents. Hence, the waves impinging upon 

the PML, are decomposed into artificial plane waves traveling along the major axis. Then, by prop

erly choosing the PML’s electric and magnetic conductivity these plane waves can be attenuated, 

and ideally vanish.

For the studies documented in this dissertation, a PML based on a “lossy uniaxial medium” 

was implemented. This was initially proposed by Sacks et al. in the context of the Finite-Element- 

Method [26], and was later successfully extended for the FDTD method by Zhao and Cangellaris 

[27] as well as by Gedney [28], This PML implementation has the advantage that it does not 

require field-splitting and hence its formulation is not based on a mathematical “trick”, but rather 

on designing a medium with the appropriate material properties. In the aforementioned papers it
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was shown that by properly choosing the material parameters of a uniaxial medium, the latter can 

be perfectly matched to free space for any angle of incidence, and at the same time attenuate the 

transmitted waves in it.

Although a very comprehensive analysis of this PML realization can be found in the previously 

mentioned papers, for completeness some of its details will be reported here. More precisely, with 

respect to the scattering scenario shown in Fig. 2.3, a reflectionless interface between Region 1 and 

Region 2 can be created if the permittivity and the permeability tensors of Region 2 are chosen to 

be:

s x 0 O
i

0

1

O

£ 2  =  £1 0 S x 0 M2 =  M i 0 S x 0

0 0 0 0

Furthermore, it is quite straightforward to show that, the wave velocities along the .x-direction in 

Region 1 and Region 2 are related as shown below:

(h x  — s x (3\x (2 .22)

Therefore, if we set sx =  1 +  the wave velocity in Region 2 becomes:

(hx =  ( l  +  7-^— ) f3ix =  Pix -  3 <7 Vi (2.23)

Consequently, the transmitted wave in the PML, along the .x-axis normal to the interface between 

Regions 1 and 2, propagates with the same velocity as the incident wave, while simultaneously it 

gets attenuated. It has to be mentioned that the wave velocities along the y-axis are also identical, 

which stems from the fact that the two media are matched.

Of particular importance for the realization of an effective PML is the choice of the conduc

tivity profile. The properties of the PML have been chosen so that the latter is perfectly matched 

to the solution domain medium in a continuous space. However the FDTD domain is inherently
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Fig. 2.4: Conductivity profile.

discrete and hence the electric and magnetic field components, along with the material properties, 

are spatially staggered. Therefore, a direct FDTD implementation of the PML without taking into 

account the staggering field component arrangement, will result in undesired reflections. To reduce 

this reflection error the PML losses along the direction normal to the interface should gradually rise 

from zero. More precisely the conductivity is chosen to vary spatially as:

/  x \ m
&x(x ) =  &max (2.24)

where d  is the PML depth and m  is the order o f the polynomial variation. A graphical representation 

of typical conductivity profile is shown in Fig. 2.4.

In what follows numerical experiments are presented that demonstrate the effectiveness of the 

PML. A 2-D domain, 100 x  50 cells long, was examined, as well as a 3-D one, 100 x  50 x 50 

cells long. In both cases space was uniformly discretised with a cell size of A x  =  0.01 m, and 

the maximum allowable time-step was chosen. The 2-D as well as the 3-D computational domains 

were excited at their centers by imposing a soft source condition on the H z and E z components, 

respectively. The excitation source was a Rayleigh pulse with significant frequency content up to
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3 GHz. Two different PML thicknesses were examined (4 and 12 layers) and the theoretical reflec

tion coefficient was set equal to In R(0)  =  —12. A parabolic conductivity profile was used with 

m  =  4. After exciting the computational domain we let the waves propagate for a sufficient amount 

of time-steps, and we calculated the total stored energy with respect to time. The corresponding 

results are illustrated in Figs. 2.5(a) and 2.5(b), and evidently the uniaxial PML is very effective for 

the truncation of an FDTD grid.
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CHAPTER 3

TWO DIMENSIONAL EXTENDED-CURL SCHEMES

3.1. Introduction

In this Chapter the development and analysis of a two-dimensional (2-D) FDTD based on an 

extended-curl operator is presented. Our approach is motivated by the fact that Maxwell’s equa

tions essentially propagate electromagnetic waves throuh the curl-curl operator, whose fundamental 

element is the 2-D transverse Laplacian operator. Unfortunately, since FDTD works with Maxwell’s 

equations in coupled curl form, the existence of this term is masked and hence its importance can be 

easily neglected. Furthermore, it can be shown that the Yee algorithm, during a time-step, indirectly 

approximates the “hidden” Laplacian term via a strongly anisotropic 5-point representation. As 

demonstrated in Section 3.2, this is solely responsible for the scheme’s poor isotropy performance. 

Consequently, amelioration of this problem is expected if the Laplacian term is approximated more 

accurately. Obviously since the direct mapping of a Laplacian approximation into FDTD updating 

is impossible, the goal is to improve the curl operator in FDTD in such a way that it yields indirectly 

a “good” and “as isotropic as possible” transverse Laplacian.

The development presented here will proceed as follows: In Section 3.3 it is shown that in a 

2-D space, only the curl operator that lies on the same plane with the transverse Laplacian needs to 

be modified resulting in what we refer to as the extended curl operator. As further demonstrated in 

Section 3.3, the latter allows mapping of any 9-point Laplacian onto FDTD update equations. The 

scheme that corresponds to the most isotropic 9-point Laplacian is shown to be characterized by 

superior isotropy, less dispersion, and a higher Courant number. Moreover, further experimentation 

with the extended-curl schemes reveals that a unity Courant number can be supported (Section 3.5). 

As a matter of fact there is an infinite number of extended-curl realizations that exhibit this feature.
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3.2. Motivation

The approach presented herein stems from the fact that Maxwell’s equations, in the case of a linear, 

isotropic, and homogeneous medium, propagate electromagnetic waves essentially through the curl- 

curl (V  x  V  x ) operator as seen in the well-known vector wave equation:

V  x V  x E  =  —fi e d 2t E  (3.1)

In the general case of a divergenceless field, the curl-curl operator can be separated explicitly into a 

transverse Laplacian and cross terms. For instance, taking the 2 -component of (3.1) we have:

~ H e d t t E z =  (V  x V  x E )z =  dz (dx E x +  dy E y) -  S72xy E z (3.2)

It can be seen that the right hand side of (3.2) consists of two terms, one of which is a 2-D Laplacian, 

transverse to the direction of the component under consideration. Therefore, it can be concluded that 

the 2-D Laplacian is a fundamental element of the 3-D curl-curl operator, or that the 2-D Laplacian 

is implicit in the two successive curl operations.

Here, we consider a two-dimensional space and a transverse, with respect to 2 , electric (TEz)

field polarization. (The same analysis can be carried out for the TMZ case as well.) For the 2-D

TEZ case, the time-domain Maxwell’s equations are given by:

dt H z =  -  (dy E x -  dx E y) (3.3)

dt E x =  - d yH z (3.4)
e

dt E y =  - ~ d xH z (3.5)
e

The most popular discrete approximation to this set of equations is the finite-difference time-domain 

(FDTD) method introduced by Yee [1], and later expanded and refined by various researchers [2,29]. 

The method assumes a staggered field arrangement both in space and time; it employs second order 

accurate central finite differences for the approximation of spatial derivatives, and the leap-frog
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scheme for time integration. The corresponding equations comprise what is referred to as the “Yee- 

scheme” or conventional FDTD, and they are given by:

St H,
n + 1 1

=  — ( <L Ex
n+1

Sop Ejii
i+ y + k  y

n + l

*+2 ’- ? + 2

SiEx
n + i 1

=  ~ ^ , H 7, - y  I J z ,
6  *+2 >J

2

Sf Ey
hi+h

5 =  - ~ S XHZ 2

*.i+5

(3.6)

(3.7)

(3.8)

where
u i + 1 -  t t j _ l

Sx u% =  ------------ -  (3.9)

Due to the two-stage “time-marching” nature of the leap-frog scheme, equations (3.6), (3.7) and 

(3.8) are referred to as the “FDTD update equations” for conventional FDTD. Notice that in this 

formulation Maxwell’s equations are treated as a first order system of two coupled curl equations. 

Evidently, the existence of the Laplacian term is masked, meaning that the latter is not directly 

computed during an FDTD calculation. Conceptually, the indirect generation of the Laplacian ap

proximation means that the Yee-scheme Laplacian results by default and not by purposeful choice. 

In what follows the accuracy of this approximation is examined.

Hence, let us examine the updating sequence during a time-step that leads to the computation 

of the H z component. Notice that for this field mode, (V  x V  x )z reduces to V xy, since it has 

been assumed that there is no variation along the ^-direction. In order to get a better insight into 

the above scenario, consider the graphical representation in Fig. 3.1. The FDTD formalism dictates 

that the value of H z (i -\- \ , j  +  \ )  at the (n +  l)-th  time-step is obtained as a sequence of two 

curl operations, performed on magnetic and electric fields, respectively. Reffering to Fig. 3.1 and 

going backwards in time, we see that H z (i +  ^ , j  +  is computed as a weighted sum of four 

curling electric field components. This is because conventional FDTD approximates the curl oper

ator component (V  x  E ) 2 through a four point discretization. In the same fashion, these electric
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Fig. 3.1: Curl-curl approximation in the Yee scheme.

field components are computed by two curling magnetic field components (not four since it has 

been assumed no variation along the 2 -direction) at time-step n,  with the one located at the center 

contributing four times in total. Therefore, we can see that the variation of H z (i +  5 , j  +  within 

a time-step is determined by its spatial variation represented by a 2-D Laplacian, transverse to its 

direction (2 ), where the Laplacian is approximated as:

1 1 1
V Xy H z +  - , j  +  - J  ~  -  4 H z j  +  - J  +  H z ^  +  - J  +  - J  +

+  H z ( i - ± j  +  ^ )  + H z ( i  +  ± j  +  ^  +  H z [ i + l- , j - 1-

(3.10)

Accordingly, it can be concluded that the four-point curl discretization performed by the Yee scheme 

results in the strongly anisotropic five-point Laplacian approximation given by:

V  Ui'j  ~  h2
— 4 u j j +  (rij_ |_ ij +  U i - i j  +  i t j j - i -1 +  U i j - 1)

-  Y2 +  d y ) Ui'i +  0

(3.11)

where h is the spatial increment. The strong anisotropy of (3.11) is due to its leading error term 

(LET); it exhibits dispersion properties dependent on the propagation angle and consequently in

troduces anisotropically dispersion error into the computational domain. Given the above, it is
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— 2 0  Uij  +

~F 4  ( i t j - i - i j  -j- -f- +  U i j —l )  -p

+  (^ i+ l j+ l  +  ^ i + l j - l  +  +  u i - l,j+l)

(3.13)

+  o( f t4)

intuitively expected that superior FDTD accuracy could be achieved if a more accurate Laplacian 

representation was employed. In what follows, first a more accurate version of the discrete Lapla

cian is presented. Afterwards, it is demonstrated how the update equations should be modified, so 

that the more accurate Laplacian representation is utilized.

3.3. Formulation

The approximation in (3.11) is a member of the family of 9-point Laplacian approximations whose 

general form is given by [30], [31]:

where c0, ci and C2  are arbitrary real numbers. It is easy to verify that the highest accuracy that 

can be achieved from (3.12) is second order. However by judiciously choosing cq, c\ and C2  one 

can obtain the Laplacian approximation shown in (3.13). In particular the derivation of the above 

requires us to first perform a 2-D Taylor expansion on (3.12). Then c q ,  c i  and c2 are subjected to 

appropriately chosen conditions so that second order of accuracy is obtained, and the corresponding 

LET turns out to be the biharmonic operator. The latter is highly desirable since it exhibits isotropic 

dispersion properties.

V  Uij ~  cq Uij  -F

+  Cl («i+ 1J +  U i - i j  +  U i j + 1 +  U i j - 1 ) + (3.12)
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For the 9-point Laplacians’ family, the combination of Co, c\ and C2  that yields the biharmonic 

operator is unique. Moreover, the latter is the highest degree of isotropy that can be achieved. If a 

higher degree of isotropy is required then widened Laplacian stencils must be employed. This will 

be further elaborated later in this dissertation.

Let us now determine how to modify the update equations so that the 9-point Laplacian of 

(3.13) is indirectly computed. Recall that the ultimate objective is to modify the update equations 

so that the value of any H z component at any time-step is determined by nine appropriately weighted 

H z components from the previous time-step. First the update equations’ stencil needs to be chosen 

so that a 9-point Laplacian stencil is retrieved. There are two ways to achieve the above and these 

are depicted in Figs. 3.2(a) and 3.2(b).

The first approach [Fig. 3.2(a)] is to retain a 4-point discretization, like the Yee-scheme sug

gests, for the curl operation that results to an H z component update. However, for the update of 

E x and E y a flux averaging strategy is required in order to “reach out” for the diagonally located 

H z-s. With respect to Fig. 3.2(a) it can be seen that the E y component depicted by the thick arrow 

is updated not only by the immediately neighboring H z components, but also by the ones defining 

the flux in the upper and lower cells, with respect to the updated component’s vector direction (also 

shown thick).

The second approach is shown in Fig. 3.2(b). In this case a complementary strategy is adopted: 

for the updating of both the E x and E y components only the immediately neighboring H z-s are 

used, similar to what the Yee scheme suggests. However, we modify the curl approximation that 

lies on the same plane on which the Laplacian is defined (for this problem the x  — y  plane). This 

modification suggests that the curl operator that results in an I i z component update be longitudinally 

extended. Essentially this is a longitudinal extension of the curl related derivatives, with respect to 

the direction of the derived component, and it will be referred to as the extended-curl operator.
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(b) Extended-curl approach.

Fig. 3.2: Update equations’ modification for a 9-point Laplacian representation. The thick arrows 
indicate curl-related components between the first half time-step.
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The choice between the two approaches is made based upon their ability to provide physically 

meaningful results. First of all, one notices that for this TEZ field configuration the magnetic Gauss’ 

law is exactly satisfied since:

The above suggests that no matter how the H z update equation is modified in this 2-D space, mag

netic flux conservation is always satisfied. In contrast, the modification of the electric field com

ponents update equations is more restricted since it is not always guaranteed that electric flux is 

preserved. Hence it becomes apparent that retaining the Yee algorithm update equations for E x and 

E y, is a very convenient and accurate “tactic” since the electric flux conservation is automatically 

satisfied [2 ], i.e.:

scenario. In particular, electric flux is not conserved and consequently its implementation will pro

vide solutions infested by spurious solutions. In contrast, the extended-curl approach is in absolute

ment of our scheme.

To complete the determination of the extended-curl operator its weights need to be specified.

dt V  ■ (n H ) =  dt (dx , dy, 0) • (0 ,0 , t i H z ) =  0 (3.14)

(3.15)

which is the discretised version of the electric Gauss’ Law, i.e.:

d tV  • (e E ) =  0 (3.16)

Bearing this in mind, it is obvious that the flux-averaging approach does not comply with the above

agreement with both o f the Gauss’ Laws. Accordingly, this approach is followed for the develop-
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From the previous discussion the updating equation for H z is given by:

5 t H z
n+ 1

®+ 2 3 +  2

n+1 n+1
5y Ex

i+ 2 3 + 2
- s x Ey

i + i i + f

71+1 71+1
5y Ex

®+ 2’4+2
- 4 Ey

i+ 5 ,j+5

71+1 77 + 1
5y Ex - SxEy

(3.17)

where a  and (3 are arbitrary real numbers. Recall that for E x and E y , we resort to the standard 

update equations, that is (3.7) and (3.8). Now, if  we apply the sequence of these update equations 

for a time-step cycle as depicted in Fig. 3.2(b), then the resulting Laplacian approximation of any 

H z component is given by:

(3.18)

-  4 a  +

+  (a  — 2/3) (ui+ i j  +  U i - i j  +  u i j + 1 +  u ^ j - 1 ) +

+  2/3 (uj+ i j + i +  Ui+ +  U i - i j - i  +  Ui-i - i j - i )  

where =  H z (i +  +  4). The values of a  and (3 for any desired Laplacian approximation are

given by equating like terms in (3.18) and (3.12). For instance (3.13) corresponds to the following 

extended-curl weights:

—4 a  = - 2 0 / 6 a  = 5 /6

2(3 = 1 / 6 >=> (3 = 1 / 1 2

a  — 2(3 = 4 /6 a  - 2 ( 3  = 4 /6

where obviously the third equation is satisfied by the calculated values for a  and (3.

To sum up, in this section a methodology was presented which via the utilization of an 

extended-curl operator, allows us to map any 9-point Laplacian into FDTD update equations. The 

reason that our analysis is developed based on the approximation shown in (3.13) is that the latter 

is the most prominent 9-point Laplacian. However the same conclusions would have been drawn
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if the analysis was carried out with respect to any other 9-point representation. In what follows 

the new family of schemes are further examined by studying their stability as well their dispersion 

properties.

3.4. Stability and dispersion analysis

Let us consider first the scheme that corresponds to (3.13), that is the extended-curl operator 

weighted with a  =  5 /6  and (3 =  1 /12. In order to investigate the proposed scheme’s stability, 

a 2-D unbounded, linear and homogeneous space is assumed. The time-step bound that ensures 

stability can be obtained by employing a standard von Neumann analysis. This requires that spatial 

discrete Fourier modes of the form:

u.i,3 U (jtxi ky'j
3-j (kx iAx + ky j  Ay) (3.19)

are substituted into the update equations (3.7), (3.8) and (3.17). k denotes the discrete wavenumber 

which, for an ideal FDTD algorithm, should be equal to the physical wavenumber, k — ui/c. The 

resulting equations can be cast into the following matrix form:

u n + 1  =  G u n (3.20)

where u n =  

in (3.21). Also,

and

 ̂  ̂  ̂TL ~
E l  E l  H z is the field component vector, G  is the amplification matrix given

—
A t

e A w ’ Cw —
A t

/uAw

Sw =  sin (kmAw/2^j  , Cw — a  +  2/3 cos (hwA w j

(3.22)

(3.23)
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with w E [x ,  y} .  The eigenvalues of the amplification matrix are the following:

A i =  1, A2,3 — 1 — 2 (& i  2  \ J  —4/ +  4/^ (3.24)

where 4r =  ( x S 2 Cy +  £y Qy S y Cx. The scheme is stable if all eigenvalues lie within the unit 

circle. This condition is satisfied when the time-step is subjected to the following constraint:

where c =  1/ y f e j i  is the speed of light in the material being modeled. The CFL condition is 

obtained if  in the above inequality we set A  x  =  A  y  =  h, and substitute the maximum value of

S 2 Cy and S 2 Cx. Thus:

A t  <
1___ h _  -y/3 h

-y/2 (a  -  2/3) c “  2 c
(3.26)

where we recall that a  — 5 /6  and j3 =  1 /12  for our scheme. Notice that if we had chosen (at, (3) =  

(1 ,0) we would recover the standard FDTD curl, and (3.26) would yield the Courant limit of the 

conventional 2-D FDTD scheme, i.e. S  =  y/2/2.

The dispersion relation can be derived if  we assume discrete temporal Fourier modes in (3.19), 

in addition to the spatial ones, or: vP =  u°e^“ nAt. Hence (3.20) yields the following eigenvalue 

problem:

St 0  - Z y S y

o St £x s x

CySyCx CXSXCy

E°x

E v

H°z

=  0 (3.27)

where S t  —  s in (u ;A t/2 ). For non-trivial solutions o f (3.27), the determinant o f the system matrix 

must be zero. Hence, after some straightforward manipulations, the dispersion relation for the
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scheme is found to be:

1  . ( co A t \
—— sin — — 
c A t  \  2 J

+

A x

1

sm

■ sm

kx A x

k y A y )

a  +  2 (3 cos ^k y A y j  

a  +  2  (3 cos (jzxA x j

(3.28)

A y  ~ \  2

If we Taylor expand (3.28) with respect to both the temporal and spatial variables, the scheme’s 

accuracy can be obtained. Hence we have:

0 2  +  o  ( A t 2) =  k t  +  e „ -

A x 2 k4 +  A y 2 k4 +  (A x 2 +  A y 2) k 2 k 2 +  (3.29)

+  0  (A x 4) +  0  (A y 4)

Obviously the scheme is second order accurate both in space and time. However, if we write the 

wavevector in polar form as (kx , ky ) =  A;(cos <fi, sin 0) and further assume a uniform discretization, 

then the spatial LET in (3.29) yields:

2

1

12

LET =  h2 (h 4 +  ky +  2  k2 k2 ĵ =  h2 { k 2 +  k2  ̂ =  h2 k4

Evidently, the LET in (3.29) is independent of the propagation angle, meaning that the scheme may 

be second order accurate but it is fourth order isotropic. For comparison purposes, the approxima

tion to the constraint equation obtained by the Yee-scheme is given by (3.28) if we set a  =  1, (3 =  0

and then Taylor expand. One gets:

. 2

C
0  + 0 ( A ^ ) = k l  +  k l -

-  L  ( A x 2 k i  +  A y 2 i f )  + 0 ( A x i ) +  0 ( A „ 4) 

where in this case, the spatial LET strongly depends on the direction o f propagation as:

(3.30)

LET =  h2  ( k 4 +  k4  ̂ =  h2  k4 (cos4  cj) + sin

Also, in the limit of a very fine discretization (A x  —► 0, A y  —► 0), (3.29) reduces to the con

straint equation that governs the propagation of a monochromatic wave in a general 2-D medium. At
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this point it should be mentioned that the same order of isotropy as the one demonstrated in (3.29), 

can be achieved by FDTD implementations on hexagonal grids as has been demonstrated in Liu 

in [10] and Xiao in [11]. However, the distinct feature of the proposed algorithm is that it retains 

the simplicity of the Yee-scheme. Thus it is relatively painless to implement existing techniques 

designed for the Yee-scheme such as absorbing boundary conditions, whereas on a hexagonal grid 

this is not a trivial task.

3.5. Extended-curl realizations for a higher Courant number

The preceding analysis revealed that the extended-curl scheme corresponding to the isotropic 9- 

point Laplacian is characterized by a more relaxed Courant limit, approximately 1.2 times higher 

than that of the Yee scheme. In what follows the highest achievable Courant number is investigated, 

assuming a  and 3  are arbitrary real numbers. More precisely, we are looking for 9-point Laplacian 

approximations that result in extended-curl schemes with Courant number higher than S  =  y/3/2.  

For reasons that will become clear later in our discussion, let us first examine if a unity Courant 

number can be achieved. S  — 1 implies that:

A t  <  -  <
1 h

(3.31)

which leads to the constraint:

max
(“ ./?)

(3.32)

Now, if  we Taylor expand (3.28) we get:

0 2  +  O  { A t 2) =  {a  +  2/3) ( k 2x +  ~k2)  + 0  { A x 2) +  O  { A y 2) (3-33)
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Fig. 3.3: Determination of parameters a  and (3.

The above relation in the limit of a vanishing cell size, should reduce to the constraint equation of a 

continuous medium, therefore the following condition should hold:

a  +  2 (3 =  1 (3.34)

Given this condition, it is straightforward to show that [Section 3.9]:

m ax { Cv +  Sy Cx \  =  m ax { 1 , 2  — 8/3} (3.35)
(a,f3) I U V i p

If we substitute the above into (3.32) and additionally assume that the square rooted quantity must

be positive, we get the following constraint:

1 /8  <  f3 <  1 /4  (3.36)

The system of (3.34) and (3.36) can be solved graphically as shown in Fig. 3.3. The solution pairs 

lie along the solid line section C D ,  bounded by the dotted and dashed lines which means that for

this continuum of a  and (3 values, a Courant number 5  =  1 can be achieved. We refer to this group

of extended-curl realizations as the “unity Courant number” schemes. As demonstrated later, there 

exists an optimum (a, (3) pair, and determined by the scheme’s dispersion properties as well as the 

scheme’s ability to provide realistic results.
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curl E

curl H

Fig. 3.4: Alternative extended-curl realization.

Before proceeding to the next Section some remarks should be made. First, regarding the 

generalization of the results presented thus far, we observe that (3.28) is the numerical dispersion 

relation that characterizes all members of the extended-curl family including the “unity Courant 

number” schemes. Similarly, the general time-step bound valid for all extended-curl realizations is 

the following:

A t  <
1 h

m ax { 1 , 2  — 8  (3} c
(3.37)

For instance, if (3 =  0 the CFL condition for the Yee-scheme is obtained. The above expression 

reveals that the extended-curl family of schemes cannot support Courant numbers that exceed unity. 

Clearly, for a Courant number higher than one, the condition max {1 ,2  — 8/1} <  1 should hold, 

which obviously is impossible.

The last remark can be also justified from the following reasoning. An alternative, although 

absolutely equivalent, way to interpret the extended curl schemes is as a combination of two Yee 

schemes. As illustrated in Fig. 3.4 the first one operates on a standard Cartesian grid comprised of 

square cells with size h. The second one exists on a 7r /4 -rotated Cartesian grid, that consists of 

rhombic-cells with size hy/2.  The two grids are positioned so that each square cell of the Cartesian
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grid is inscribed into a rhombic cell. A rigorous justification of the above is provided by the fact 

that an alternative representation of (3.18) is given by [31]:

V  Uij ~

^  ot 2/3 / Uj-i-ij 'Ujj Uij Uj—xjA  /  Ui,j-)-i — Uij Uij Uij—i
~  h V h h /  V h h

+  * L
h ^ 2

(3.38)

If we correspond u ĵ to H z (i +  then the terms in the first pair of square-brackets represent

four discrete curl-operations which result in four electric field components that lie on the x  — y  

plane, in a closed-loop, circulating formation. These curl operations are performed on a Cartesian 

grid with cell size h, as indicated by the denominators of the corresponding terms. Regarding to the 

terms in the second pair of square brackets we can conclude that they are a 7r /4 -rotated version of 

the first ones from their corresponding finite difference stencil. In addition their denominators reveal 

that the cell size is hy/2.  Consequently, given that the maximum time-step for the Yee-scheme, on a 

uniform grid is A t  =  -A=, then the same time-step for a cell size o f hy/2  becomes A t  =  %, which
C y  2  ^

for a uniform Cartesian grid corresponds to a unity Courant number.

3.6. Anisotropy and dispersion error

In this section the phase velocity isotropy as well the dispersion error of the most representative 

extended-curl schemes are examined. These are the Yee-scheme, the most isotropic Laplacian 

scheme, and two of the unity-Courant-number schemes, corresponding to points D and C of Fig. 3.3. 

Their properties are summarized in Table 3.1. In order to examine the numerical phase velocity be

havior versus propagation angle, it is required to substitute ( k x, k y ) =  k (cos </>, sin <p) in (3.28),

u. U.h3 1 ,j~ 1
hV2 hV 2

+ Ui—1 j + 1 u i,j u i, j

hV2 h\[2
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Table 3.1: Comparison of the most representative extended-curl realizations.

Case (a, (3) 5 (co ,C i,C 2 ) LET

1 (Yee scheme) ( i . o )
V2
2 ( - 4 , 1 , 0 ) V 4  — 2 d%y

2 (The most isotropic Laplacian) ( i . A )
V3
2

( 1 0  2  n  
V 3 ’ 3 ’ 6 / V 4

3 (Point D in Fig. 3.3) ( !>*) 1 v 4  +  <

4 (Point C in Fig. 3.3) ( U ) 1 ( - 2 , 0 , 4 ) V 4  +  4 d 4,

and then to solve iteratively the resulting transcendental equation with respect to the numerical 

wavenumber k. Finally, the numerical phase velocity can be computed as: vp =  uj/k.

The corresponding results for a discretization of A/10, and using the Courant stability limit are 

depicted in Fig. 3.5. There is a one-to-one correspondence between the form of the LET shown in 

the last column of Table 3.1 and the schemes’ isotropy performance. More precisely the bigger the 

number of cross-terms d£y by which the LET deviates from the biharmonic operator, the worse the 

isotropy becomes. The dashed line (Case 2) exhibits highly isotropic phase velocity characteristics 

corresponding to the most isotropic Laplacian approximation. In the inset figure, there is a more 

detailed illustration of the phase velocity behavior for this case. It does fluctuate as a function of 

the propagation angle, however the amplitude of this ripple is of the order of 10- 4 . Furthermore, 

the dash-dotted-square-marker line (Case 3) is more isotropic compared to the conventional FDTD 

scheme of Case 1, but less isotropic than Case 2. Nevertheless, this scheme has the distinguishing 

characteristic that for propagation along the principal axes (6 =  0° ,90°)  the “magic time-step” 

condition [2,32] is satisfied, meaning that A t  =  h /c  and the dispersion error is totally eliminated 

for all frequencies. It is interesting to note that the schemes that correspond to Cases 1 and 3 

exhibit complementary anisotropy characteristics, with Case 3 being overall more isotropic. Finally, 

Case 4 exhibits the most anisotropic phase velocity, and in particular, the value of the phase velocity 

minimum at <f> =  45° has been significantly decreased, compare to Case 3. Not only does this
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Fig. 3.5: Normalized phase velocity.

severely deteriorate the scheme’s isotropy but it also has a detrimental effect on the dispersion error 

as shown next.

A practical measure of the scheme’s performance with respect to the dispersion error reduction 

is the maximum absolute phase error per wavelength, defined as:

=  360° max (I1 - f II (3.39)

In Fig. 3.6 the dispersion error for the four cases is illustrated as a function of the number of cells 

per wavelength ( N \  =  h/X).  Clearly all schemes are second order accurate since the slope of each 

one is -2. Moreover, Cases 2 and 3 suffer less from dispersion errors than conventional FDTD. 

In contrast Case 4 as expected from the previous analysis exhibits the worst dispersion character

istics. At this point it can be asserted that Cases 3 and 4 correspond to the best and worst “unity 

Courant number” schemes, respectively. All other combinations of (a,  (5) pairs exhibit isotropy and 

dispersion characteristics within the performance bounds defined by Cases 3 and 4.

In Fig. 3.7 the anisotropy error for each case is plotted as a function of resolution N \ .  We 

have chosen to define the anisotropy error as the difference between the maximum and minimum
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Fig. 3.6: Maximum dispersion error.

value of vp, relative to the speed of light c. It can be seen that as (3.29) predicts, the Case 2 scheme 

exhibits fourth order anisotropy error, in contrast to the other three schemes, which are second order 

isotropic.

Now, let us further examine the behavior of the “unity Courant number” schemes for different 

values of the (a,  (3) pair, that lie on the C D  section of Fig. 3.3. The analysis in the last paragraph of 

the previous section revealed that an equivalent expression for the update equation o f H z ( i+ \ , j + \ ) 

is given in the following form:

St H z
n + 1

{a  -  2(3) (V  x  E )yee +  4/? (V  x E v r o t —Y e e
) z

n + 1

(3.40)

2 2

Apparently, this is a linear combination of two flux terms: one defined on a regular FDTD 

grid, and a second one defined on a 7r /4 -rotated version. These are denoted as (V  x E )yee and 

(V  x E)™t-yee respectively. Hence, at point D  we have: a  — 2(3 =  4 (3 =  This condition 

indicates that the two flux terms in (3.40) contribute equally. However, as we move from D  to C,  or 

equivalently as a  —»■ 2(3, the Yee flux term gradually vanishes, while the other term increases. In the 

limit, at point C,  the flux is due entirely to the rhombic-cell grid arrangement. This scheme, based
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Fig. 3.7: Anisotropy error.

solely on a 7r /4 -rotated square cell, has been shown to be equivalent to a finite-difference scheme 

developed on a staggered collocated grid [33,34]. The detrimental characteristic of the latter is that 

when excited by localized sources, it suffers from grid-decoupling [10,33]. Consequently, from the 

“unity Courant number” schemes, the choice of (a ,/?) =  ( 3 / 4 , 1 / 8 )  is optimal, not only because 

it renders the most isotropic and the least dispersive scheme, but in addition because it prevents the 

development of the non-physical grid-decoupling effect.

3.7. Some remarks on the conservation properties o f the extended curl scheme

Some interesting conclusions, regarding the scheme’s charge conservation properties, can be drawn 

from the numerical dispersion matrix shown in (3.27). The following approach was initially imple

mented by Marcysiak and Gwarek in [35]. Hence, from the first two equations w e have:

St t y - Z y S y H°z =  0 

St E" +  £XSXH°Z =  0

S t Hx S x E°x -  t A y Sx S y H" =  0 

S t Z y S y t y  +  ( x ^XS x Sy H 0z =  0
(3.41)
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Then if we add the above two equations, we get:

S t ( Z x S X f i 2  +  Z y S y E % )  =  0 (3.42)

or

1 /  uj A t
-7— sin —-—
A t  V 2

(3.43)

Now, given the following Fourier pairs

F { S x } . 1 1

A x
sin

kx A x
(3.44)

and

T / n  2  j . f  u>At\
(3.45)

A t ““  V 2  /

we can conclude that (3.43) is the spatio-temporal Fourier transform of (3.15). Consequently with 

the aid of the numerical dispersion matrix, we have verified the conservative nature of the scheme.

Let us now examine the conservation properties of the flux-averaging scheme using the previ

ous approach. The numerical dispersion relation in matrix form for this scheme is given by:

Sy Cx 

St t,xSXCy 

St

Again, by combining the first two equations we obtain:

St 0

0 St

—Cy Sy Cx s

E°

Ey

1

0 (3.46)

1 . (  uj A t
—  sm —- —
A t  V 2

kr A x

2(3
■ sm

A x  

kx A x

sm
1

sm

2 J  ~ “ x  ' A y  

kyA y

sin b A L \ e »

(3.47)

cos ( j c x A x ^ j  — cos ( ' k y A y j

A x  A y  \ 2 I \ 2

Obviously, the flux averaging scheme is not conservative. From the right hand side of the above 

equation, we can see that the unbalanced charge is a function of both the frequency of operation as
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well as the propagation angle. The behavior of the residual term is better revealed by examining its 

Taylor expansion when A x  =  A y  =  h —> 0. It is

It can be seen that the excess charge is by no means negligible, and as a matter of fact it is on 

the order of the numerical error. This last result is an accurate quantitative measure of the artificial 

charge that the scheme generates, and it can be used as a criterion to determine whether the algorithm 

is appropriate for a given application.

3.8. Numerical Examples

3.8.1. Free space propagation

In this section preliminary numerical results are presented to support the previously discussed anal

ysis. A 2-D domain 2 m x 2 m, that lies on the x  — y  plane, is considered. The domain is uniformly 

discretized using a cell size of A x  =  1 cm. The computational domain consists of 200 x  200 cells, 

and a twelve-cell-thick uniaxial PML is placed around it. A TEz field configuration is excited by 

injecting a ^-directed magnetic field at the center of the domain with a differentiated Gaussian pulse 

time dependence. We let the cylindrical waves propagate and probe the time history of H z at two 

equidistant points, with respect to the excitation point, one along the principal axis (<f> =  0 °) and 

one along the domain’s diagonal (<f> =  45°). Simulations are performed for Cases 1 and 2 and the 

corresponding results are shown in Figs. 3.8(a)-3.8(b). As expected, Case 2 is significantly more 

isotropic and so the pulse distortion due to dispersion errors is less severe. Also in Figs. 3.9(a) and 

3.9(b) there are contour plots of the propagating pulse for the two Cases.

(3.48)
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Fig. 3.8: Pulse propagation in a 2-D domain with TEZ fields, (a) Case 1. (b) Case 2.
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Fig. 3.9: Contour plots of pulse propagation in a 2-D domain with TEZ fields, (a) Case 1. (b) Case 2.
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Fig. 3.10: Resonant frequency prediction error.

3.8.2. Cavity resonances

In this numerical experiment, we calculate the resonances of a rectangular cavity whose bound

aries correspond to perfect electric conductors (ii x  E  =  0). The dimensions of the cavity are 

0.0615 m x 0.027 m, and it is uniformly discretized with a 41 x 18 grid. Simulations were per

formed using the Yee and the Case 2 schemes. In all simulations the maximum allowable time-step 

was used. The TEZ mode is excited in the cavity by injecting a ^-directed magnetic field at its center 

with a very sharp differentiated Gaussian pulse time dependence.

A sufficient amount of time-steps are executed so that a 1 MHz frequency resolution is 

achieved. Where applicable, image theory is applied for the boundary treatment. In Fig. 3.10 

the algebraic relative error is illustrated for the first 2 0  resonant frequencies as computed by the two 

schemes against the corresponding analytic values. It is observed that both schemes underestimate 

the resonances’ values, with the Case 2 scheme being less dispersive as expected. Also, the detri

mental effects of anisotropy can be observed in the Yee scheme predictions, where accuracy depends
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Fig. 3.11: 2-D cavity resonances, (a) Case 1 (Yee). (b) Case 2.
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Table 3.2: L% error comparisons for radiation pattern predictions.

Yee Case 2

d =  2.5 A 0.1011 0.0528

d =  5.5 A 0.1513 0.0873

on propagation directions, and thus is bounded according to the highest and lowest achievable phase 

velocity in the grid.

3.8.3. Radiation pattern

In this subsection we calculate the radiation pattern of two infinite line sources. The sources extend 

to infinity along the 2 -axis, they are located symmetrically with respect to the origin along the y- 

axis, and they are uniformly excited. Given that the distance between the two sources is d  then the 

total magnetic field at a distance p  in the far-field is given by:

Notice that if we choose (3d/ 2 to be odd multiples of ir/2,  then at 0  =  tt/ 2  and <j> =  3 7 r/ 2  the 

radiation pattern of this structure exhibits nulls. Now, when trying to model this configuration in 

FDTD, the destructive interference between the two sources along the direction of the nulls, is not 

exactly predicted due to dispersion. This implies that the radiation pattern for these angles does not 

vanish but exhibits some finite value. Moreover, if the distance between the sources is electrically 

large, in the direction of the nulls the radiation pattern exhibits minor lobes whose maximum values 

can be comparable to that of the actual pattern.

The above scenario was modeled using both the Yee algorithm as well as the Case 2 scheme. 

A relatively coarse discretization of A/ 6  was chosen, and two different distances from the source 

were examined, namely 2.5 A and 5.5 A. The excitation of the domain is realized by imposing a soft

(3.49)
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Fig. 3.12: Radiation pattern predictions of two infinite current sources uniformly excited. Dis
cretization h =  A /6 .
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source condition on the appropriate H z components. Since this is a single frequency problem we 

can take advantage of the isotropic properties of the Case 2 numerical velocity, and so we optimized 

it with respect to the dispersion error at the particular frequency of interest. This was achieved by 

setting the numerical wave vector equal to its exact value along some direction. This can be realized 

by appropriately scaling the free space material properties. The corresponding radiation patterns 

are shown in Figs. 3.12(a) and 3.12(b). It can be seen that along (j) =  tt/2  and 4> =  3 7 t / 2  the Yee 

scheme exhibits a spurious minor lobe while the Case 2 scheme does not. Also in the L 2  error sense, 

the Case 2 scheme outperform the Yee scheme as indicated in Table 3.2.

3.8.4. Waveguide propagation constant

In this example a parallel plate waveguide is modeled. The T E z mode is excited by injecting a 

z-directed magnetic field, with a very sharp differentiated Gaussian pulse time dependence. The 

dimensions of the waveguide are 13 cm by 50 cm, and the cell size is set equal to 1 cm. The 

propagation constant information is extracted using the following procedure. The time-history of 

the electric field component E x is observed along two transverse planes separated by a distance d. 

Then, the above quantities are Fourier-transformed, and the information for each excited mode is 

obtained by utilizing the orthogonality properties of the field eigenfunctions, that is:

E x =  ~ ^ ~ A n cos ( - J - )  z~i<3y => J  E x cos )  d z =  A n ' K S m n e ~ i l 3 y  (3.50)

Then, we divide the integrated quantities for the two observation planes and the ratio is equal to 

e - j Pd, and hence the values of 6  can be easily extracted. The propagation constant of the first seven 

modes are computed using the Yee, the Case 2, and the Case 3 scheme. The corresponding results 

are shown in Figs. 3.13(a)-3.13(b) and Fig. 3.14. It can be seen that the results corresponding to the 

Case 2 and especially the Case 3 scheme, are in better agreement to the theoretical expected ones 

than are the results obtained by the Yee scheme.
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Fig. 3.13: Normalized propagation constant (5/f3o versus frequency.
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Fig. 3.14: Normalized propagation constant /3/A) versus frequency. Case 3 

3.8.5. Scattering width

In the last example we compute the scattering width of an infinite (along the z-direction) dielectric 

cylinder of circular cross-section. This scattering scenario is modeled using the Yee and the Case 2 

scheme. Four different cylinders are examined under a T E Z uniform plane wave illumination, and 

the results are compared against the analytical solution given by:

Comparative plots are shown in Figs. 3.15-3.16 where it can be seen that both schemes are in 

good agreement with the analytical solution. Comparisons with respect to the L 2  error are summa

rized in Table 3.3, and it can be concluded that the Case 2 scheme is somewhat more accurate. As 

before, since this is a single frequency problem, the Case 2 numerical velocity was optimized with 

respect to the dispersion error.

SW =  ^  =  2 77 
A

Analytical 
Case 3
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Fig. 3.15: Scattering width predictions of an infinite circular dielectric cylinder.
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Fig. 3.16: Scattering width predictions of an infinite circular dielectric cylinder.
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Table 3.3: L% error comparisons for scattering width predictions of a dielectric cylinder.

Permittivity Discretization Cylinder radius Yee Case 2

(MII h =  A/20
2 0  h 1.6019 0.9311

30 h 1.7069 0.7756
00 II CO h =  A/30

2 0  h 0.2680 0.2151

30 h 0.6713 0.4564

3.9. Maximization of S 2  C y +  S 2 Cx

In this section we derive the maximum value of the following quantity:

J  =  sin2  [a +  2/3 cos (y)] +  sin2  [a +  2/? cos (a:)] (3.52)

given that a  +  2/3 =  1. For simplicity we set:

sin2 ( I ) = x and sin2 (I) ^ y

therefore

J  =  x  (1 -  4fly) +  y  (1 -  4fix) (3.53)

with x, y  G [0,1], It is

J  =  {A -  4 /3 B ) x  +  B  (3.54)

where

A  =  1 — 4fly and B  =  y

We examine the following cases:

L A  — 4 ( 3 B >  0

Then J  is monotonically increasing, therefore

Jm ax =  j { x  =  1 ) =  A  +  ( 1  -  4/3)E =  1  +  ( 1  -  8 f3)y

and
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(a) if  1 — 8(3 >  0 then Jmax =  J ( x  =  1; y  =  1) =  2 — 8/5

(b) if  1 — 8/5 <  0 then J max  =  J { x  =  1 ; y  =  0) =  1

2. A -  4 0 B  <  0

Then J  is monotonically decreasing, therefore

Jmax — J [ x  =  0) =  B  =  y

and obviously

Jmax =  J { x  — 0; y =  1) = 1

We can conclude that

Jmax =  m ax { 1 , 2 -  8/5} , V/3 G R (3.55)
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CHAPTER 4

THREE DIMENSIONAL EXTENDED-CURL SCHEMES

4.1. Introduction

In this chapter a three-dimensional finite-difference time-domain scheme is presented with im

proved isotropy characteristics and possessing higher Courant number than the standard Yee 

scheme. The basic idea is to transversely extend the curl operator in order to improve the trans

verse Laplacian representation of the curl-curl operator. A stability analysis is performed, and the 

dispersion characteristics of the proposed scheme are investigated. It is shown that the proposed 

scheme is significantly more isotropic than the standard finite-difference time-domain scheme. Ad

ditionally, it is proved that under certain conditions a unity Courant number can be achieved, and 

the resulting scheme is characterized by dispersion characteristics complementary to those of the 

regular finite-difference time-domain scheme. Numerical simulations are performed that validate 

the theoretically derived results.

This chapter is structured as follows: in Section 4.2 the formulation of the proposed scheme, 

is discussed and the corresponding update equations are presented. In Sections 4.3 and 4.4 stability 

and dispersion analyses are performed. Also, in Section 4.5 the scheme’s performance is studied 

from a different perspective and its relation to the non-physical grid decoupling effect is detailed. Fi

nally, in Section 4.6 simple numerical experiments are performed that validate the proposed scheme.

4.2. Formulation

In Chapter 3 it was demonstrated that the inherent phase velocity anisotropy of a 2-D FDTD grid, 

can be attributed to the representation of the transverse Laplacian associated with the curl-curl 

operator. More precisely it was shown that during an FDTD time-step the Laplacian term in the
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following equation

~ l i  e d tt E z =  dz (dx E x +  dy Ey) -  V 2x y E z (4.1)

is implicitly approximated via a strongly anisotropic 5-point representation. Starting from this ob

servation it was claimed and proven that if a more isotropic representation is utilized, the grid 

anisotropy can be drastically reduced. In what follows, this idea is extended and implemented for 

the 3-D FDTD formalism. Before proceeding with further details of the formulation it is benefi

cial, for the support and theoretical justification of the proposed scheme, to address the issue of a 

Laplacian’s isotropy, through the definition of its quantitative measure.

Due to its even symmetry and direction invariance property, the most general, second order 

accurate, Laplacian representation is [30,31]:

V  U ij  =  Co 11% j  T

+  Ci (ui+ i j  +  U i - i j  +  U jj+ i +  u ^ - 1 ) +  (4-2)

+  c 2  (U j+lj + l +  Ui+ 1 J _ 1  +  Ui-  1 J _ 1  +  U j-lJ  + l)

From the Laplacians’ family defined above, the member that exhibits the best isotropy can be deter

mined by inspecting the dispersion properties of its truncation error term, and more precisely, the

dispersion variations with respect to direction. For this reason, first we need to take the 2-D Taylor

expansion of (4.2) and then calculate the combination of co, ci and C2  that yields the most isotropic 

truncation error term [31, pp. 39]. Following this procedure it is revealed that the only approxima

tion that meets this requirement is the one shown in (4.3). Notice that the leading error term is the bi

harmonic operator, whose perfect isotropy can be easily verified by computing its Fourier transform, 

i.e. E  { V 4} =  |k |4. Obviously the operator’s dispersion properties are independent of the propa

gation angle. For comparison purposes let us examine the error introduced by the 5-point Laplacian 

related to the regular FDTD scheme. In this case the corresponding approximation is given by (4.2) 

if we set (cq, c i ,  C2 ) =  (—4 , 1 , 0), and yields the following leading error term: — ^  (<94  +  <94) u ^ j .
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^  Ui,j  _  g  /j2  ^  Ui’j

+  4 (u j+ ij  +  U i - i j  +  ^i.j+1 +  u i , j - 1) +

+  ( ^ i + l j ' + l  +  ^ i + l , j - l  +  ^ i - l j - 1  +  u i - l , j + l )
(4.3)

+  C?(/l4)

The Fourier transform of this differential operator is: T  {d 4  +  <94  } =  |k | 4  (cos4  <fr +  sin4  </>), and

evidently its dispersion characteristics are dependent on the direction of propagation. It follows 

that, in contrast to the previous case, this truncation error term introduces dispersion discrepancies 

anisotropically into the grid. It has to be mentioned that in terms of isotropy, and second order 

accuracy, approximation (4.3) is the best we can get. For any desired improvement, such as higher 

order isotropic leading error terms, Laplacian approximations with more degrees of freedom are 

necessary which can be realized by widened finite difference stencils.

For the development of the proposed scheme in 3-D, the framework of the Yee scheme is 

adopted, that is, the update equations retain their curl form and the electric and magnetic field 

components are staggered both in space and time. Similar to the 2-D case the transverse Laplacian 

term is not explicitly computed, but rather implicitly. The implicit Laplacian calculation can be 

intuitively thought of as a two stage procedure where the intermediate one determines its accuracy. 

This scenario is illustrated in the following diagram, and essentially it is the FDTD realization of

V ^ + c r o s s  terms ^  ^

It can be seen that the H  values determine how many E z values from the n-th time-step, and in 

what combination, contribute to the calculation of E z at the next time-step. Put differently, the H

(4.1).
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Fig. 4.1: Extended-curl stencil for E z and H z .
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E2
n + 1

i,j,k+1 / 2
=  e 2

n

i , j ,fc+l/2

A t , n+X/2
H------ P\fiXHy -  Sy H x

i , j+ l ,fc+1/2

+  Q: -Hj

+  / 7 ( 4  77,

n + l / 2

ij ' , fc+l/2

n + l / 2

S yH x

n + l / 2  \
)

* + 1  Jife+1 / 2 /
n + l / 2  \

) +
i,j,fc+1 / 2 /

H,

+  -
A t

n + 3 /2

i + l / 2 j + l / 2 , f c

P  (fiy E x 

■f" ct ^Sy E x 

+ P  (fiy E x

—  f c+ 1 /2

=  77

-  Sy H x
n + l / 2  ^

i - l J , f c + l / 2 >

n + l / 2

i+ l /2 , j+ l /2 , f c

n+1

i+ 3/2 ,j+ l/2 ,fe

n+1

i+ l / 2 J + l /2 , f c

n+1

*—l/ 2 j+ l / 2 , f c

Ey

fi x Ey

fix Ey

n+1 

i+ l/2 , j+3 /2 ,fc  

n+1 

i+ 1 /2  j '+ l/2 ,fc  

n+1 

i+l/2,j-l /2,k

(4.5)

(4.6)

components link E z components from consecutive time-steps and regulate the Laplacian’s form. In 

our case a Laplacian with 9 non-zero elements, instead of 5, is desired to be recovered. In order 

to increase the number of contributing E z components, it is required that an extended-curl stencil 

be utilized as shown in Fig. 4.1(a). The extended-curl operator can be viewed as a longitudinal 

extension of the involved derivatives approximation, with respect to the direction of the derived 

component. Furthermore, notice that unlike the 2-D case, in a 3-D space, transverse Laplacians can 

be defined in all three major planes, i.e. x — y, x  — z  and y  — z. Therefore, since for all six field 

components a transverse plane can be defined, each component can be associated to a 2-D Laplacian, 

through equations like (4.1). Consequently, for all six update equations an extended-curl stencil is 

applicable. For instance in Fig. 4.1(b) there is the extended-curl stencil for H z. According to this 

convention the update equations for E z and H z for a linear, isotropic and uniform medium are the 

ones shown in (4.5) and (4.6), respectively, where a  — g and P  =  j 2 - For compactness we utilized
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the central difference operator defined as: Sx Ui — («.,;+1 / 2  — ^ - 1 / 2 ) /A x . The great advantage of 

this curl modification is that superior isotropy can be achieved without having to resort to different 

grid topologies and without having to introduce additional field components. Additionally, notice 

that although we are working in a 3-D space, we aim for the improvement of the fundamental 2- 

D transverse Laplacian operator. Under this consideration we have determined how to tailor the 

curl operators; and apparently their transverse planar extension is sufficient for substantial isotropy 

improvement. An alternative interpretation of this scheme, which further justifies the proposed 

modification of the update equations, is given in Section 4.5.

Now, in order to permit accurate and physically meaningful results the proposed scheme should 

implicitly be flux conservative. More precisely, if  a problem’s initial conditions are divergence free, 

this condition must be satisfied at any time instant. For the extended-curl scheme it can be proved 

that for any cell in the grid the following condition holds:

n+ 1 / 2 ^
S t  S x  D x

n + l / 2
. . .  +  S y  D y

n + l / 2
+  S z  D z

hj,k
. =  0 (4.7)

which is the discretized version of cltV  • D  =  0. In the same manner we can derive the discrete 

version of the magnetic charge conservation formula.

4.3. Stability analysis

The stability analysis of the proposed scheme is performed by employing a standard von Neumann 

analysis. If we assume a 3-D unbounded, linear space then the time-step bound that ensures numer

ical stable simulations is obtained if  spatial discrete Fourier modes o f  the form:

u n
n ^ e ~ j ( kx i A x  + ky j  A y  + kz k Az )  ^
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are substituted in the update equations. The resulting homogeneous system of finite difference 

equations can be cast in the following matrix form:

E x Ey E z H xwhere u n =  

amplification matrix given by:

u n+1 =  G u r

n ~ n ~ n  ~ n + l / 2  -j. n + l / 2  ~ n + l / 2
H,v H z

(4.9)

is the state space vector, and G  is the

where

A  =

and B  is given in (4.12).

s2cxcv + s2cxc,

1-6 x 6  +
03x3 CA

1

1 -3 >

1

m

0 SZCy ~SyCz

-szcx 0 sxcz
SyCx - S XCy 0

(4.10)

(4.11)

B  =

S XSyCyCZ ~ SXSZCyCZZ^ x ^ y T Uy^x^y

SXSyCxCy S 2xCyCz + S*CXCy ~SySzCXCz

S XS ZC XC y - S vS zC xCy S yC xC z +  S 2xCyC z

(4.12)

Also, £ =  2 j A t/e , r] =  2j A t / y ,  Sw =  s in (kwA w / 2 ) / A w ,  and Cw = a  +  2(3 c o s (kwA w )  

with w  €  {x,  y, z ] .  The eigenvalues of the amplification matrix are the following:

^ 1 ,2  =  1 , ^3 ,4 ,5 , 6  =  1  — 2  4/ ±  2  1/  —T' +  Vl/ 2 (4 .13)

where ’T =  —(rj  (S2 Cy Cz + S2 Cx Cz + S 2 Cx Cy). The scheme is stable if the absolute value 

of all eigenvalues is less or equal to one, which leads to the following time-step constraint:

1
A t  <

‘V 7
(4.14)
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where for brevity we set J  =  S% Cy C z +  Sy C x C z +  S z C x C y, and c =  1/^/FJl is the speed 

of light in the material being modeled. The minimum upper bound of A t determines the Courant- 

Friedrichs-Lewy (CFL) condition. The latter is obtained if we allow A x  =  A y  =  A  z  =  h, and 

substitute the maximum value of the square rooted quantity. Thus:

Notice that when (a , (3) =  (1 ,0) (4.15) reduces to the CFL condition of the conventional 3-D FDTD 

scheme, i.e. S  =  \ /3 /3 .  The choice a  =  § and (3 =  ^  gives a CFL condition of S  =  v/3/2.

Thus as in the 2-D case we notice that the time-step bound can be considered a function of 

two arbitrary real numbers, a  and [3. Hence, it becomes really intriguing to study its behavior 

and identify whether it is possible to relax more the already restrictive CFL condition. We begin 

our investigation by examining the dependency between a  and (3. One way 1 to realize this, is by 

checking the consistency of the proposed finite difference formula. Using Taylor series expansions 

it is straightforward to show that:

For reasons that will become apparent later in our discussion, let us first examine whether it is 

possible, and under what conditions, to achieve S  =  1. This implies that:

(a  +  2(3) dx Uj j +1/ 2,fc —

(3 S x  Uiy+3 / 2 ,fe +  a 5 x u^j+1/ 2,k +  (3 S x  U i,j_i/2 ,fe +  O  (A  x 2)

(4.16)

Obviously, the above relation represents a derivative approximation if

a  +  2(3 =  1 (4.17)

m ax
(a,13)

(4.18)

An alternative way would be to determine the a  and (3 values that minimize the error of the numerical dispersion
relation.
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Fig. 4.2: Determination of parameters a  and (3.

Given the previously derived consistency condition, it can be shown that [Section 4.7]:

m a x { J }  =  m ax { l ,  2 — 8 /?, 3(1 — 4/3)2} (4.19)

If we substitute the above in (4.18) and additionally take into account that the square rooted quantity 

must be positive, we get the following constraint for (3:

1 /8  <  (3 <  1 /4  (4.20)

The system of (4.17) and (4.20) can be solved graphically as shown in Fig. 4.2. Similarly to the 2-D 

case, the solution pairs lie along the solid line section C D ,  defined by the dotted and dashed lines 

which means that for this continuum of a  and (3 values, a Courant number S  =  1 can be achieved. 

A discussion about the scheme’s performance for different (a, (3) pairs is given in Sections 4.4 and 

4.5.

Now, according to the preceding analysis it could be claimed that were a similar procedure 

to be followed, the necessary and sufficient conditions, if any, could be derived so that a Courant
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St 0 0 0 _  £,Z SZ Cy £y Sy Cz
0 St 0 £z Sz Cx 0 - 6r Sx C
0 0 St ~^y Sy Cx £.« Sx Cy 0
0 CzSZCy Cy Sy c z St 0 0

~Cy Sy Cx 0 Cx S x c z 0 St 0
Cy S y C x ~ Cx Sx Cy 0 0 0 St

' E l  -

f y
E°z
H°x

H °y
H °

L  ±Jz .

0

(4.21)

number higher than one could be achieved. This statement is false as we prove hereafter. If S' >  1

then from (4.18) we have m a x { J )  =  m ax { 1 .2  — 8/3,3(1 — 4/3)2  } <  1, which based on ordering
(a,13) j3

arguments is impossible. On that ground, the highest Courant number that can be achieved by the 

scheme under study is equal to one. It is important to mention that this Courant number comes at 

the cost of isotropy deterioration as it is demonstrated in the next Section.

4.4. Dispersion analysis

The dispersion relation can be derived if  we assume discrete temporal Fourier modes in (4.8), in 

addition to the spatial ones, or: u rl =  vP At. Hence (4.9) yields the eigenvalue problem 

shown in (4.21). Note that following a procedure similar to the one described in Section 3.7 the 

conservative nature of this 3D scheme can be verified.

Now, requiring non-trivial solutions for the system in (4.21), leads to the following dispersion 

relation:

1  . ( u)At
sin

c A t  \  2

+

+

1 . ( kxA x \
—  sin - 2 —  
A x  \  2 )

1 . f  kyA y
—— sin - 2 - —  
A y  \  2

A z
sin

kzA z

[a +  2/3 cos (kyAy)]  [a +  2(3 cos(fc2 A 2:)] 

[a +  2 (3 cos (Ai.tjA.t)] [a +  2(3 cos (A^Az)]

2

[a +  2  (3 cos (kxAx)]  [a +  2  (3 cos (kyAy)]

(4.22)
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Table 4.1: The most representative three dimensional extended-curl schemes.

Case
Extended curl Courant number Laplacian elements Leading error term

{a, j3) S (c o ,c i ,c 2) differential operator

1 ( i .o ) %/3
3 ( - 4 , 1 , 0 ) Ot +  Oy

2 ( § . £ )
y/3

2
( to 2  n  
V 3 ’ 3 ’ 6 / V 4

3 ( U ) 1 ( - 3 , U ) d 4  +  dy +  3 d^y

where c =  1 /y /JTE is the velocity of light in the medium. Notice that when the dis

cretization vanishes (A x , A y ,  A z  —► 0), (4.22) yields the constraint equation that governs the 

propagation of a monochromatic wave, in a general 3-D medium. After substituting k =  

k (sin 9 cos (p, sin 9 sin (p. cos 9), the dispersion relation can be solved iteratively to determine the 

numerical phase velocity versus propagation angles 9 and </>.

The dispersion properties of the three most representative implementations of the extended- 

curl scheme are examined, namely the Yee scheme, the most isotropic and the “Courant number 

equal to one” scheme, denoted as Case 1, Case 2 and Case 3, respectively. Their characteristics are 

summarized in Table 4.1.

Figs. 4.3(a)-4.3(b) depict comparative plots of the normalized numerical phase velocity for 

each case as a function of the elevation angle 9, along two different azimuthal planes: 0  =  0° 

and 4> =  45°. The calculations were performed for a discretization of A /10. As expected, the 

dashed line (Case 2) that corresponds to the most isotropic Laplacian approximation, exhibits highly 

isotropic phase velocity characteristics in both planes. Moreover, the solid and dotted lines, Case 1 

and Case 3 respectively, are characterized by complementary trends, with the latter being overall 

more isotropic. This is in accordance with the last column of Table 4.1 where we can see that 

this scheme’s Laplacian truncation error term is “closer” to complete a biharmonic operator than 

the one in Case 1. However, regardless of this scheme’s poorer isotropy, compared to Case 2, its
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Fig. 4.3: Normalized phase velocity.
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Fig. 4.4: Reformulated extended-curl discretization.

most attractive feature is that for propagation along the principal axis the magic time-step condition 

( A t  — A x / c) is satisfied, meaning that the dispersion error is totally eliminated for all frequencies 

along this axis. This can be very beneficial for the modeling of problems where propagation is 

primarily concentrated along the principal axis of a Cartesian grid, such as waveguide-like problems.

Similarly to the 2-D case, the choice of (a,  (3) for Case 3 is the optimal S  =  1 case. Exper

imentation with the numerical phase velocity curves revealed that for all other pairs although the 

magic time-step condition along the principal axis is preserved, the scheme’s isotropy characteris

tics worsen. As a matter of fact the smaller the value of a  [moving from D  to C  in Fig. 4.2], the 

worse the isotropy becomes.

4.5. Extended-curl and grid decoupling

In this Section we revisit the extended-curl scheme and we try to investigate from a different per

spective its behavior as a function of a  and (3. For simplicity, our analysis assumes a 2-D T E z field 

configuration, however it is straightforward to extend these arguments in the case of a 3-D space. 

The development of the extended-curl scheme was based on a Cartesian grid and a field arrange

ment as the Yee algorithm suggests. This trait is highly desirable because FDTD over a Cartesian 

grid is well established, and easier to implement. In what follows, we re-examine the extended-curl
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concept through a different prism that allows a non-Cartesian field arrangement.

An alternative representation of (4.3) is the one shown in (4.23) [31]. If we correspond tq j to 

H z (i +  1 /2 , j  +  1 /2) then the first square-bracketed term of (4.3) can be considered as a curl opera

tion, which in FDTD naturally results in a perpendicular, to the curl plane, electric field component. 

The second term is a 7r /4 -rotated version of the first one and based on the previous argument it also 

represents a curl operation however the associated electric field components are oriented in accor

dance to the aforementioned rotation. This is better depicted in Fig. 4.4. It can be seen that there are 

two fluxes contributing towards the update of H z (i + 1/2 , j  + 1  /2): a regular FDTD flux, and a flux 

generated by the new rotated electric field components. Consequently, as also indicated in the figure, 

a different path to generate 9-point Laplacians in FDTD is by considering an additional interlaced 

rhombic grid where along the edges of its unit cell additional field components are defined. Notice 

that for this case, the latter are collocated with the nodes of the regular FDTD cell. In addition, 

it can be readily shown (by appropriately manipulating the update equations) that this alternative 

scheme is mathematically equivalent to the initially proposed extended-curl, in the sense that both of 

them achieve, through different paths, the recovery of the desired 9-point Laplacian. Their only, yet 

major, difference is that the extended-curl schemes realize Laplacians by incorporating information 

from diagonal cells directly in the update equations, using existing field components. In contrast,
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the reformulated scheme using a rhombic grid analogy incorporates the same information through 

the additional, “auxiliary”, components.

Now, based on the reformulated extended-curl scheme, the update equation for H z (i + 1  / 2 , j  +  

1/2) can be re-written in the following form, where the Yee grid flux as well as the rotated-Yee grid 

flux are explicitly used.

H z
n + 3 /2

=  H z
i + l / 2 , j + l / 2

n + 1 /2  A  t
+  —  X 

i+ l / 2 J + l / 2  H
1  n+ 1  (4.24)

(a  -  2/3) (V  x E ) Yee +  4/3 (V  x  E ) r~Yee
- i+ 1 /2 J + 1 /2

This expression is valid not only for the isotropic scheme (Case 2) but for every member of the 

extended-curl family, that is for every (a,  j3) pair. Hence, we have all the necessary information 

to explain the following: the authors during their experimentation with the Case 3 scheme noticed 

that when the grid is excited by localized sources as a  —> 2/3 (or a  gets smaller than 3/4) the com

putational domain exhibited a rather deconstructed field configuration. Recall that, in Section 4.4 

it was noted that the choice of (a , /3) =  (3 /4 ,1 /8 ) ,  for Case 3, is optimal because for any other 

pair, the scheme’s isotropy gets worse. This is an absolutely valid statement albeit theoretical, in the 

sense that it only explains a function’s behavior (the numerical dispersion relation) but lacks phys

ical insight, and of course fails to explain the behavior itself. As a  —> 2/3 severely distorted field 

configuration ensue because as equation (4.24) shows, the Yee flux term vanishes and the primary 

flux contribution is due to the rotated-Yee grid components. This creates grid decoupling meaning 

that only part of the field components are excited resulting in a “sawtooth field pattern”. This arti

fact was first reported in [33] in the context of finite elements Consequently, for the Case 3 scheme 

the choice of (a , (3) =  (3 /4 ,1 /8 )  is optimal not only because it is the least anisotropic, but also 

because it prevents the development of the detrimental, non-physical grid decoupling effect.

A point of interest is that since the extended-curl scheme and its reformulated version are
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mathematically equivalent they yield computationally identical results. Moreover, the reformulated 

version is more compact because all of the field components are contained within a unit cell. This 

characteristic makes it more flexible to handle material boundaries. Therefore, given a computa

tional domain, this can be partitioned into regions with and without material discontinuities. Then 

the two schemes could be judiciously interfaced so that the reformulated version handles the re

gions involving material discontinuities and the initial version the rest of the domain. O f course this 

comes at the cost of an increase in the computational burden since additional components have to 

be computed. For this hybridized scheme, caution is required when dealing with perfect electric 

conductor (PEC) edges. This is because the reformulated scheme essentially assigns finite values to 

electric field components located on the nodes of the Yee cell. Hence it cannot accurately model the 

well known field singularity occurring at PEC edges.

4.6. Numerical experiments

In this section numerical experiments are performed to examine the accuracy of the 3-D extended- 

curl scheme. First, a 3-D domain (1 m x 1 m x 1 m), is considered and it is uniformly discretized 

using a cell size of h =  1 cm. The computational domain consists of 1003  cells, and a twelve- 

cell-thick uniaxial PML is placed around it. The domain is excited by injecting a ^-directed electric 

field, at one of the domain’s bottom comers. The source has a differentiated Gaussian pulse time 

dependence whose frequency spectmm is shown in Fig. 4.5(a). We let the spherical waves propagate 

and record the time history of E q at three equidistant points, with respect to the excitation point, 

one along the principal axis k =  ( 1 , 0 , 0 ), one along the domain’s short diagonal k =  (1 , 1 , 0 ), and 

one along the long diagonal k  =  ( 1 , 1 , 1 ).

Simulations are performed for the three Cases of Table 4.1, and the corresponding results are 

shown in Figs. 4.6(a)-4.6(b). As expected, Case 2 is highly isotropic however the pulse has been

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69

1.0

0.75

0.5

0.25

0.0
0 2 4 6 8 10

Frequency (GHz)

(a)

0.3
Principal axis 
Short diagonal

0.2 Long Diagonal

- 0.1

- 0.2

-0.3
100 110 120 130

Scaled tim e-step , (n x S )
140 150 160

(b) a  =  5 /6 ,5  =  n/3/2.

Fig. 4.5: Numerical experiments. Cell-size h =  1 cm and h /c  =  0.03 ns. (a) Excitation pulse 
frequency content, (b) Case 2. Notice that Eg has been scaled to the elevation angle sine.
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Fig. 4.6: Numerical experiments. Cell-size h =  1 cm and h / c  =  0.03 ns. (a) Case 1. (b) Case 3. 
Notice that E$ has been scaled to the elevation angle sine.
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distorted due to dispersion errors. Case 3 is essentially the opposite of Case 1 since the best pulse 

propagation can be achieved along the principal axis and the worst along the direction of the long 

diagonal. Additionally, due to its mitigated dispersion error characteristics, pulse distortion is not 

as severe as in the Case 1, and the phase lag is not noticeable.

The second problem we examine is that of a pulse propagation inside an air filled parallel 

plate T E M  waveguide. Propagation is assumed along the y-direction and the T E M  (H X, E Z) 

mode is excited by appropriately injecting the necessary surface currents. The dimensions of the 

waveguide are 0.15 m x 2 m x 0.15 m and the domain is uniformly discretized using a cell size 

of h =  1 cm. Along the direction of propagation the waveguide is terminated by a 10-cell thick 

uniaxial PML. Since this is a 3-D problem the sideways infinite extent of the waveguide is modeled 

using perfect magnetic conductor (PMC) walls. The geometry has been chosen rather elongated 

so that any dispersion discrepancies of the propagating pulse will be pronounced. Additionally, in 

order to ensure an undisrupted propagation of the excited mode special treatment is required for the 

spatial discontinuities created by the PEC and PMC boundaries. The details of this modification 

are shown in Fig. 4.7(a). For simplicity we have assumed that the PEC wall consists of PEC cubes 

i.e. the electric field components along all twelve edges surrounding a grid point are set equal to 

zero. Additionally, all the magnetic field components perpendicular to the cube faces have to be 

set to zero, in oder to prevent them from coupling with the surrounding space, and exhibit non-zero 

values. Hence an H x component parallel and adjacent to the PEC wall requires for its updating two 

E z components from the PEC cell, which are naturally set to zero. By employing image theory [36] 

the value of these perpendicular components are restored and the wave propagation is accurately 

modeled preventing artificial scattering from the PEC wall. The same recipe has to be used for 

electric field components parallel to PMC walls. The excitation pulse has a Gaussian profile with 

significant frequency content up to 3 GHz. Cases 1 and 3 were simulated and in Fig. 4.7(b) there
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Fig. 4.7: (a) PEC boundary treatment, (b) Pulse propagation in parallel plate waveguide.
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Fig. 4.8: Bistatic radar cross-section (RCS) of aPEC sphere on the y —z  plane, (a =  10h, h =  A/40)

are comparative plots of the pulse’s spatial variation at a specific time instant. As expected the Yee 

formulation suffers from dispersion [2], while the Case 3 extended-curl scheme, being dispersion 

free, is in excellent agreement with the analytical solution. Hence, with this simple test, the accuracy 

of the method for this specific type of problems is validated, making it a very reliable and precise, 

wideband modeling tool.

Finally we note that in the parallel plate case due to the geometry’s simplicity the image prin

ciple is easy to apply, convenient and accurate. This is not usually the case with more complex 

structures and an attempt for its systematic implementation throughout an arbitrary PEC boundary 

can be a very laborious programming exercise. Nevertheless simply encoding a PEC sphere with 

the PEC cube algorithm and without including any image algorithm corrections yields very good 

results for the backscattered field as shown in Fig. 4.8.
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4.7. Maximization of S' 2  Cy C z +  Sy Cx C z +  S' 2 Cx Cy

In this section we derive the maximum value of the following quantity:

J  =  sin 2  [a +  2/3 cos (y)] [a +  2/3 cos (2 )] +

+  sinzsin2 [a +  2/3 cos (x)] [a +  2/3 cos (z)] +

+  sin2 [a +  2/3 cos (x)] [a +  2/3 cos (y)] (4.25)

given that a  +  2/3 =  1. For simplicity we set:

Sin2 ( f )  “  X’ Sin2 ( ! )  =  V and Sin2 ( I )  ^  2

therefore

J  =  x  (1 — 4/3?/) (1 — 4/3z) +  y  (1 — 4/3x) (1 — 4/3z) +
(4.26)

+ z  (1 -  4/3x) (1 -  4/3?/) 

with x , y , z  €  [0,1]. It is:

J  =  A (  1 -  4 /3 * )  +  £ 2  (4.27)

where

4  =  x  (1 -  4/3?/) +  y  (1 — 4/3x)

B  =  (1 -  4/3x) (1 -  4/3y)

Let us first calculate the maximum value of quantity B,  The latter can be expressed as a monomial 

with respect to x ,  as:

B  =  - 4 /3  (1 -  4/3y)x +  (1 -  4/3?/) (4.28)

We examine the following cases:
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1. - 4 /7 ( 1  - 4 (3y) >  0

Bmax =  B ( x  =  1) =  -  4/3 (1 -  4/3y) +  (1 -  4/3y) =  

- 4 / 3 ( 1 -  4/3) y  +  1 -  4/3

Since —4/3(1  — 4/3) >  0

£m aa; =  £ ( x  =  l ; y  =  l )  =  ( l - 4 / 3 ) 2

2 . - 4 /3 ( 1  -4 /3 y )  <  0

Bmax =  ^  =  0) =  1 -  4/3y

(a) if /3 >  0 =>■ 1 — 4/3y >  0, then

B m ax  =  -B(x =  0 ; y  =  0 ) =  1

(b) if /3 <  0 then

1 -  4/3 y  < 0 = » / 3 > - ^ - > 0  
4y

which is impossible.

(c) if (3 =  0 then

B m ax  =  1

(d) if 1 — 4/3y =  0 then

B m ax  =  0

Therefore we can conclude that:

-Bmax =  max { 1 , (1 -  4/3) 2 } , V/3 €  M 

Now, since (4.27) is a monomial of z, the maximum value of J  is given by:

Jm ax =  m ax {A ,  B  +  ( 1  -  4/3) ^4}

(4.29)
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and

max {.A} =  m ax {1 ,2  —8/5} (4.30)

We notice that A  and B  are maximised for different values of x  and y,  meaning that they cannot 

always be maximized simultaneously Consequently:

1 . if (x , y )  =  (0 , 0 ) then

max { B  +  ( 1  — 4/5) A }  =  m ax {75} =  1

2 . if  (x , y )  =  (1 , 0 ) then

max { B  +  (1 — 4/5) A }  =  1 — 4/5 +  (1 — 4/5) max { A }

=  2 (1 -  4/5)

3. if (x, y)  =  (1 ,1 ) then

max { B  +  (1 — 4/5) 21} =  max {75} +  (1 — 4/5) max {A }

=  3(1 -  4/5)2

It can be concluded that:

Jmax =  m a x { l , 2 - 8 / 5 , 3 ( l - 4 / 5 ) 2} ,  V/5 e  R (4.31)
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CHAPTER 5

HIGHER ORDER EXTENDED-CURL SCHEMES

5.1. Introduction

In this Chapter we examine higher order schemes based on the extended-curl operator. Two different 

scenarios are studied and both result in “hyper-isotropic” schemes. In the first section the extended- 

curl formalism is further utilized for the implementation of a higher order Laplacian (HOL) approx

imation. An excellent description on general HOL representations can be found in [37]. Here, we 

focus on Laplacian representations that utilize a 25-point stencil which are the next possible incre

mental improvement over the 9-point ones. Their favorable trait is that they can be fourth order 

accurate, which implies that isotropic properties of sixth order should be expected. Indeed, 25-point 

Laplacians can exhibit isotropic phase velocity characteristics up to sixth order, and in contrast 

to the 9-point ones, there are more than one realizations that manifest this property [21,30]. We 

concentrate therefore only on isotropic 25-point Laplacians.

In the next section a higher order isotropic FDTD scheme is presented. The enhanced isotropy 

characteristics are achieved by appropriately combining an extended-curl discretization [38] along 

with artificial dispersion terms, realized through weighted third order temporal derivatives. For 

this reason this scheme is denoted as extended-curl (4,2). These dispersion terms are computed 

using the modified equation approach which replaces them with their spatial equivalent. Their 

regulatory role in the scheme’s performance is revealed by examining the numerical dispersion 

relation. Hence, it is shown that by judiciously choosing their weighting factor, sixth order isotropy 

can be achieved. Furthermore, it is shown that the scheme exhibits a higher and rather relaxed 

Courant number compared to the Yee algorithm. The following analyses are developed for a two 

dimensional space occupied by a homogeneous, isotropic and non-dissipative medium. A T E Z field
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configuration is assumed.

5.2. A higher order Laplacian realization

5.2.1. Formulation

Given that there are multiple isotropic 25-point Laplacian stencils the main issue is the best suited

one for our purposes, that is for use in the FDTD update equations. Here we assume a TEZ mode 

and investigate the following updating scenario:

The primary factor that motivates which updating scenario we consider is that the extended-curl for

malism dictates that the E x and E y update equations remain the same as those of the Yee-scheme. 

For the current field mode this is realized through 2-point curl approximations, which creates the fol

lowing correspondences: the update of an E x component requires the pair of the vertically placed, 

upper and lower H z components. Similarly, the update of an Ey component, requires the horizon

tally placed, left and right H z components. On that account, regardless of the extended-curl operator 

stencil, the information from the E x and E y components is eventually translated into vertical and 

horizontal H z pairs. Consequently, one concludes that a 25-point Laplacian can be mapped into 

FDTD update equations, via an extended-curl operator, if its stencil can be constructed, topologi

cally, as a combination of horizontal and vertical, possibly overlapping, H z pairs.

After experimentation with all possible isotropic Laplacian stencils, it was concluded that the 

following rendition is the most straightforward to employ:

(5.1)
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Fig. 5.1: Higher order extended-curl discretization. The weights correspond to E x components. 
Due to symmetry only half of them are denoted. The same weighting applies to E y.

where the E terms are:

Si

£ 2

S 3

E4

—  T  Ui—i j  +  +  Ui j —i

=  'W i+ l j+ l  +  u i+ 1 J - 1  +  u i - l j - 1  +  u i + l , j - l

=  u i+2,j +  U i -2 , j  +  u i,j+2  +  u i , j - 2

=  U i+ 2 ,j+ l  +  U i+ l, j+ 2  +  'U’i —2 ,j+ l  +  +

+  U i - 2 , j - l  +  U i - i j - 2  +  U i+ 2 , j - l  +  u i + l , j —2

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

and they correspond to groups of points that exhibit the same 7r/ 2  rotation symmetry. One notices 

that the above approximation exhibits fourth order accuracy in space, and its LET is the triharmonic 

operator. This essentially signifies isotropic phase velocity up to sixth order.

Finally, what needs to be determined is the stencil of the extended-curl operator. The latter 

needs to be compatible with both the stencil of the Laplacian under study, and the Yee algorithm 

updating of E x and E y. Bearing this in mind, it can be easily verified that the spatial operator 

shown in Fig. 5.1 complies with both conditions. It is noticed that this is both a longitudinal and a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

transverse curl extension, as opposed to the transversely extended only one, presented in Section 3.3. 

The corresponding equation can be written as shown in (5.8)

S t H z
n + l

B  [ 5 y E x
n + l

i+ y + h  v

+  A  ( S y  E x

+  B  ( 5 y  E x

f ix B y

fix By

D  [ 5 y  E x

+  C  | f i y  E x  

+  D  ( S y  E x

2 ’- '  1 2 

n + l

i+  2 li +  2

n + l

2 ’J+ 2

n + l
, , fix E y

*+2 ^ + 2

n + l
1 1 fix Ey

*+2>i+2

n + l
. 1 . , 1 ~ fix Ey
' - j J + 2

n + l

* + i , j + f

n + l

i + y + %
n + l

n + l

*+5 j ’+ f  

n + l

*+2 >i+ 2

n + l

i + b o - b

(5.8)

where:
, 3 — Uj_3- I T  cy t y

f ix  Ui  =  - --------------
A x

(5.9)

The weights A ,  B ,  C  and D  are determined following a procedure analogous to that presented in 

Section 3.3. Hence, by applying equations (3.7), (3.8) and (5.8) during a time-step cycle, one can 

confirm that the resulting Laplacian approximation is given by:

V uid ^ - 4 A u i j  +  ( A - 2 B  +  C )  Ei +  ( 2 B  +  2 D )  S 2 -  C T ,3 -  D E 4 (5.10)

Then by equating like terms between the above equation and (5.10), we get a system of equations 

which solution yields:

„ 63 „  6  ^  1 J _  2A — — , B =  — , C =  — , and D =  —
6 0 ’ 6 0 ’ 6 0 ’ 60

Equations (3.7), (3.8) and (5.8) constitute what we refer to as the HOL-based scheme. A general 

remark should be made here that for the reasons described in Section 3.3 we have ensured that this

HOL-based scheme is consistent with both of Gauss’ Laws. Moreover, the HOL-based scheme
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cannot be realized in 3-D. However since 2-D analysis is a useful tool in electromagnetics for many 

important problems, it is still of great interest to examine the possibility of obtaining hyper-isotropic 

FDTD formulations in 2-D.

5.2.2. Dispersion and stability analysis of the HOL-based scheme

If we assume a plane wave solution then the numerical dispersion relation for the HOL-based 

scheme is found to be:

c A t
sm

w A A

-
l A V r -  (3 -  4S„2) C f c ] +

(5.11)

where

C^.B =  A  +  2 B  cos ( k wA  w'j and C (:lD =  C +  2D  cos (hwA i v SJ

The features of the scheme are better revealed after Taylor-expanding the above, where we obtain:

2

1

90
A x 4  k6 +  A y 4 ky +  3 A x 2 A y 2 ( h 4 fc2  +  A:2 k4 + (5.12)

+  O  (A x 6) +  O  ( A y 6)

Evidently, the scheme is second order accurate in time and fourth order in space. Notice however 

that for a uniform discretization, the LET is the triharmonic operator which ensures numerical phase 

velocity isotropy up to 6 -th order. For comparison purposes, the corresponding Taylor-expanded nu

merical dispersion relation for the most popular higher order FDTD scheme, namely the Fang (2,4) 

scheme [3], is given by:

( 7 ) 2 +  0  (A t2) =  ^  +  ~ky ~  J o  ( A x 4 ^  +  A y 4 ~ky)  + (5.13)
+  O  (A x 6) +  O  ( A y 6)
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Fig. 5.2: Maximum algebraic dispersion error.

This scheme is second order accurate in time and fourth order in space; however, in contrast to (5.12) 

the LET is dependent on the propagation angle. Moreover, it is important to note that the coefficients 

of the two LETs, of equations (5.12) and (5.13), are of the same order. This is critical because, if 

the coefficient of the LET in (5.13) was substantially less than one, the introduced anisotropy error 

would be insignificant, and hence the two schemes would not be comparable in absolute terms.

Furthermore, the stability limit of the HOL-based scheme can be obtained if we solve (5.12) 

with respect to the angular frequency u  and require the latter being real for all values of kx and ky. 

Accordingly, the time-step bound that ensures stability is given by:

Notice that for the derivation of the above condition a square cell of size h has been assumed, since 

for this type of grids the proposed scheme exhibits its superior characteristics. Additionally, (5.14) 

is less restrictive than the corresponding conditions, for the Yee and the Fang (2,4) scheme (the

Unfortunately the HOL-based scheme for time-steps close to the Courant limit propagates 

waves at superluminar speeds. This is a deficiency of all FDTD schemes that approximate spatial

(5.14)

time-step bound for the former is given by A t  <
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derivatives in higher orders than the temporal ones [2], This is in contrast to the Yee or any other 

scheme that exhibits identical spatial and temporal discretization errors. The above are illustrated in

inverse resolution 1. For all schemes the maximum stable time-step is used. It can be seen that 

the HOL-based scheme, as well as the Fang (2,4) deviate positively from the zero dispersion error 

curve, which is a direct consequence of superluminarity.

which both deviate negatively. Moreover, it should be mentioned that the latter two schemes exhibit 

their optimum behaviour at the Courant stability limit, and in particular their dispersion error is 

upper bounded by the zero dispersion error curve. Nevertheless, this is not the case when it comes 

to the HOL-based, as well as the Fang (2,4) scheme. More precisely by reducing the time-step or 

equivalently by reducing the Courant number, the temporal error can become comparable to the 

spatial one and even cancel each other out. At this point the dispersion error curve exhibits a zero- 

crossing which means that for the discretization that this occurs, superior accuracy can be achieved. 

As a matter of fact, there can be an optimal Courant number which minimizes the dispersion error 

over all propagation angles, for a fixed resolution [18]. Its derivation requires the minimization of 

some appropriately chosen quantity. For example if we define as an optimization constraint the 

minimization of the following quantity:

Fig. 5.2, where the algebraic1 value of the maximum dispersion error is plotted as a function of the

These curves are juxtaposed with the ones that correspond to the Yee and the Case 2 scheme,

o

Then by using a simple searching algorithm the Courant number can be determined that guarantees

superior accuracy for a given N \ .

*We define the algebraic maximum dispersion error (  as:

ICI =  360° m
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Fig. 5.4: Anisotropy error.

The above optimization procedure was applied to both the HOL-based and the Fang (2,4) 

scheme, for a discretization of N \  =  30. The corresponding results are shown in

Figs. 5.3(a) and 5.3(b). As regards to the maximum dispersion error it can be seen that although 

both schemes exhibit the same rate of descent, the HOL-based for the optimized resolution exhibits 

a deep null which, apparently, indicates almost total elimination of the dispersion error. Note here 

that the corresponding Courant numbers are S  =  0.0763 and S  =  0.0557 for the HOL-based and 

the Fang (2,4) scheme, respectively.

Additionally in Fig. 5.3(b) the phase velocity deviation 1 — is depicted at N \  =  30, as a 

function of the propagation angle. The HOL-based scheme is substantially more isotropic and from 

the inset figure we can see that the magnitude o f its phase velocity deviation, is 1 0 3  times less than 

that of the Fang (2,4).

Finally, the scheme’s performance with respect to the anisotropy error is also depicted in 

Fig. 5.4. As expected the performance of the HOL-based scheme is outstanding. From the same 

figure we also observe that although the Case 2 and the Fang (2,4) are both fourth order isotropic, 

the former introduces less anisotropy error.

In conclusion the following points should be emphasized. First of all in Fig. 5.2 it can be
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seen that the Fang (2,4) is less dispersive than the HOL-based scheme. This is attributed to the fact 

that the LET coefficients may be of the same order, however the Fang (2,4) one is slightly smaller, 

hence it is less dispersive. This is true provided that the same time integration scheme is applied, 

meaning that the same amount of temporal discretization error is introduced. Furthermore it should 

be mentioned that comparing the HOL-based scheme to the Fang (2,4) is not absolutely “fair”. In 

particular, in terms of accuracy the schemes are comparable since both exhibit the same temporal 

as well as spatial accuracy. However, in terms of Laplacian realization, the Fang (2,4) essentially 

recovers the stencil of a 49-point Laplacian. Therefore a “fair” comparison would be against a HOL- 

based scheme that utilises an isotropic 49-point Laplacian stencil. Nonetheless, it was demonstrated 

that just a 25-point Laplacian realization is sufficient to create an FDTD scheme with performance 

comparable to that of the Fang (2,4), which clearly indicates that the extended-curl scheme achieves 

a more efficient stencil utilization.

5.3. A higher order isotropic FDTD scheme using artificial dispersion via controllable higher order 

time derivatives

5.3.1. Motivation

In our previous publications [38] and [39] it was demonstrated that the inherent anisotropy o f the 

Yee algorithm can be attributed to the anisotropic approximation of the 2-D transverse Laplacian 

associated to the curl-curl operator. Furthermore, it was demonstrated that with the aid of a trans

versely extended curl operator (Fig. 5.5) any 9-point Laplacian approximation can be mapped onto 

FDTD update equations. Hence by mapping an isotropic 9-point Laplacian approximation, a fourth 

order isotropic FDTD scheme can be realized. This is better revealed if we Taylor-expand the right-
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hand side of the corresponding numerical dispersion relation. It is

h2 / a   \  h2
RHS =  ( f  +  j  ) ~k2 + 32 ( f  +  3/?)  “  96 ( f  “  5/?)  c o s ^  ^  +  °  (5'16)

where a uniform cell size h has been assumed and the wavevector has been written in polar form as

(kx, ky) =  fc(cos 4), sin <j>). Notice that if we set a  =  5 /6  and f) =  1/12, (5.16) yields

RHS =  ijfe2  -  ^ jfc 2  +  0 ( h 4) (5.17)
4 48

which clearly indicates that fourth order isotropy has been achieved. Essentially the extended curl 

approach introduces two parameters a  and (3 which values are chosen so that the angle dependent 

term is eliminated. However these two degrees of freedom are not enough in order to achieve an 

even higher degree of isotropy. In particular, the next term of the expansion in (5.16) is given by

h ‘4 / a  __ \  hA f a
( I  +  7/?)  +  640 ( f  "  3/?)

cos
1152

where it is obvious that the trigonometric term cannot be eliminated, given the previous choice for a  

and p.  It has to be mentioned here that, strictly speaking, a scheme can be characterized as isotropic

if the Taylor expanded right hand side of its numerical dispersion relation, can be written as

M
RHS =  y :  cm k2m, with at least c\ ^  0 (5.18)

m =  1

5.3.2. Formulation

From the above analysis it becomes apparent that the key idea is to introduce an additional degree 

of freedom in the scheme which should allow the coefficient in (5.3.1) to be independent of the 

propagation angle. Note that the extra degree of freedom should not disrupt the already isotropic kA 

term.

For this purpose we consider the fourth order temporal derivative approximation, or
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Fig. 5.5: Extended-curl stencil for H z update. The E x and E y components are updated according 
to the Yee algorithm.

where

St un =
,(n + 1/2  _  u n - 1/2

A t
(5.20)

However, we let the contribution of the third order time derivative term, be controlled by a real 

constant 7 , which essentially gives the desired extra degree of freedom. Given the above, the update 

equation for H z is modified as follows

St H z
n + l

*+1/ 2 7 + 1/2
7

A t2  d 3H z in+i
24 d t 3 i + 1/ 2 7 + 1/2

(V  x E ) 2

Similarly, the update equations for E x and E y are given by:

E x
n + 1/2

i + l / 2,j

A t 2  (fiE,r
7 24 d t 3

and

StE,.
n+ 1 / 2  A t 2 d 3E v

-  7 '*,7+1/2

n + 1/2  1
=  -  (V  x H ) 

*+1/ 2,7 e

n + 1/2  1
=  -  (V  x  H ). 

*,7 + 1/2 £ 1

n + l

j+1/2,7+1/2

n + 1/2

* + l / 2J

n + 1/2

*7+1/2

(5.21)

(5.22)

(5.23)
24 d t 3

It is interesting to note that d 3/ d t 3  terms play essentially the role of a regulatory artificial dispersion, 

where we recall that for the wave equation even order time derivatives introduce dispersion (while
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Fig. 5.6: Additional components required for the approximation of Of H z .

odd order ones introduce dissipation). For the calculation of these terms, and in order to obtain 

explicit FDTD update equations, the modified equation approach is employed [31]. Hence through 

successive differentiations of the Maxwell’s equations we obtain

d t

E

1

o if

H — h  0
V x ?

E

H
(5.24)

For the T E z field configuration the above yields

0  0

0  0

$
1

d! Ey =

1

bt
1

-T-  dv£■* n  x y  y

 i v 2 f)V Xy 0X 

0

EL,

E7„

H x

(5.25)

Since the third order spatial derivative terms are multiplied by A t 2, it suffices to approximate them 

through second order accurate expressions. Hence we have

d3 Ey n + l

d x 3  1+ 1 / 2 J + 1 / 2 A y

n + l

i + 2 , j + l / 2  

n + l

E}

+  3 Ey
i , j + 1/2

- 3  E,

-  E,

n + l

i + l J + 1 / 2

n + l

1- 1 / 2 J + 1 / 2 X

(5.26)
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and

d :i E,„
d y 2 d x

n + l

1+ 1 / 2 J + 1 / 2 A x 3  (
E,

~  E;

n + l

i+ l , j + 3 / 2  

n + l

®>3+ 3 / 2

- 2 £ ,  

+ 2 E^

n + l

i+ l . j + 1 /2

n + l

i J + 1 / 2

+  E,

En,

n + l

i + l , j - l / 2  

n + l  \  

i j  —1 / 2 /

(5.27)

The additional components required for the above approximations are shown in Fig. 5.6. In the 

case of the H z update, by comparison to the stencil in Fig. 5.5, it can be seen that only four extra 

points are needed. For the third order time derivative approximation of E x and E y, a combination 

of H z components is required, corresponding to the blue and red group of components respectively, 

shown in Fig. 5.6. Given that the original 2D extended curl scheme requires only two H z com

ponents for the update of E x and E y , it can be concluded that the modification under discussion 

requires six more components for each one of them.

5.3.3. Dispersion and stability analysis

Now that we have determined the form of the update equations, it is straightforward to derive the 

corresponding numerical dispersion relation. Hence by assuming a discrete spatio-temporal Fourier 

mode as the solution, the following relation can be readily derived

1 . ( u j A t \
sin

c A t  \  2  J

+

1

A x

1

A y

sin

sin

f kr A x  

kyA y \

a +  2(3 cos ( k y A y )  -  7  ^  ( i  -  7  

2/3 cos ( k xAx^j -  7  ^  ( l  -  7a  +

with

u =  (c A t ) 2  <
A x

sin
kx A x

+
1 . /  kyA y

—— sin —
A y  I 2

2 )

(5.28)

(5.29)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

In order to determine the values of the parameters a , 13 and 7  we examine the behavior of the Taylor 

expansion coefficients. It is

0 2 + ° (a<2> =
=  ( a  +  2 /3) P  —

a  — 5 (3 , . 7 S 2  . a  +  6 /?
H cos (4 4>) -  +  3—  (1 +  a  +  2(3) +

+

48

7 ^
576

(1 +  a  — 4(3) +

24

a  -  18/3

+
7  2 S 4  7 S 2

960

(1 +  a  +  4/3) +

16

cos (4 <j>) +

a  +  14 f31 4

(5.30)

hA k6 +  O  (h6)
576 192 v 576

We notice that for second order accuracy the coefficient of the first term should be equal to one, or

a  +  2/3 (5.31)

For fourth order isotropy the coefficient of the trigonometric term in the second expansion term 

should vanish, or:

a  -  5/3 =  0 (5.32)

Finally, for sixth order isotropy the coefficient of the trigonometric term in the third expansion term 

should vanish, or:

7  S 2 , . a  -  18/3
—  ( l  +  a - 4 / 3 ) +  96Q - 0

The three previous relations constitute a system of equations which solution yields

c A t

(5.33)

5 1 4
a = «> and 7  •S' 2  =  t t  ) Where S  =

6  12 15 n

The above combination o f values results in the follow ing Taylor-expanded right-hand side o f  (5.28)

(5.34)RHS =  i p  -  i i .  h2 k4  +  ^ i ? L  hA k6 +  O  (h6)
720 64800

where obviously a sixth order isotropy is indicated. Additionally, by employing a standard von- 

Neumann analysis it can be shown that the time-step bound that ensures a stable scheme is the
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following:

A t  <  0.9745 -  (5.35)
c

The scheme’s performance is demonstrated in Figs. 5.7(a) and 5.7(b). In Fig. 5.7(a) the normalized 

phase velocity deviation, defined as

edisp =  ^ _ m e a n { ^ }  (5 3 6 >

is depicted as a function of the propagation angle for a fixed resolution N \  — 10. Obviously

the proposed scheme outperforms the others. Furthermore in Fig. 5.7(b) the scheme’s sixth order

isotropy is demonstrated where the isotropy error versus resolution is shown, defined as

Canis =  - T 1 ! ? }  <5'37)

In addition the scheme’s performance with respect to the maximum algebraic dispersion error is 

shown in Fig. 5.8. Notice that the proposed scheme does not support superluminal phase velocities 

and its dispersion characteristics are similar to the Case 2 scheme.

5.4. Numerical examples

In this numerical experiment we calculate the resonances of a rectangular cavity whose bound

aries correspond to perfect electric conductors (n  x  E  =  0). The dimensions of the cavity are

0.0615 m x  0.027 m, and it is uniformly discretised with a 41 x  18 grid. Simulations were 

performed using the Fang (2,4), the HOL-based and the extended-curl (4,2) scheme. In all sim

ulations the maximum allowable time-step was used. The TEZ mode is excited in the cavity by 

injecting a 2 -directed magnetic field at its center with a very sharp differentiated Gaussian pulse 

time dependence. A sufficient amount of time-steps was executed so that a 1 MHz frequency reso

lution is achieved. In the cases necessary, image theory is facilitated for the boundary treatment. In
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Fig. 5.7: (a) Normalized phase velocity deviation versus propagation angle at N \  =  10. 
(b) Anisotropy error versus cells per wavelength.
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Fig. 5.8: Maximum algebraic dispersion error.

Fig. 5.9(a) the algebraic relative error is illustrated for the first 20 resonant frequencies as computed 

by the four schemes, against the corresponding analytic values. It is observed that the HOL-based 

as well as the Fang (2,4) scheme overestimate the resonances’ values while the extended-curl (4,2) 

scheme underestimates them. This, as well as the overall performance of the schemes, are in perfect 

agreement with the theoretically expected behaviour demonstrated in Figs. 5.2 and 5.8. Finally, in 

Figs. 5.9(b),5 .10(a) and (5.10(b)) there are the actual values of the predicted resonances for each of  

the schemes under study.
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Fig. 5.9: (a) Resonant frequency prediction error. (b) 2-D cavity resonances computed by 
Fang (2,4).
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Fig. 5.10: (a) 2-D cavity resonances computed by HOL. (b) 2-D cavity resonances computed by 
extended-curl (4,2).
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CHAPTER 6

PERFORMANCE OF EXTENDED CURL SCHEMES FOR A FIXED GRID RESOLUTION

6.1. Introduction

In this Chapter we examine the possibility of developing a high fidelity algorithm which allows 

the injection of arbitrary time-domain data into an FDTD grid. One well-known version of this 

problem is the implementation of a plane-wave source in an FDTD domain. This is achieved by 

utilizing what is usually referred to, in the FDTD literature, as the “total-scattered field formulation”. 

According to this formulation, plane wave sources are created in FDTD by choosing a rectangular 

Huygens’ box, where along its periphery the necessary Schelkunoff currents are imposed. Ideally, 

in the area surrounding the Huygen’s box the field should be equal to zero, resulting in a perfect 

separation between the domain that the plane wave exists in, and the outside world. However, if one 

attempts to implement the above scenario using the Yee scheme, the ideally surrounding “quiet” 

area is contaminated by spurious reflections and non-physical field distribution, usually referred to 

as “leakage”. This is primarily due to the mismatch between the numerical dispersion relation of 

FDTD, and the dispersion relation of the continuous free space that governs the analytically derived 

current sources. Obviously, it is expected that if a more accurate method is employed the leaking 

field will be minimized.

One approach to tackle this problem is to utilize a diakoptics-based technique a brief discussion 

of which is given in the following section. Its development is based on the derivation of a discrete 

Green’s function that describes the response of an FDTD grid. An alternative approach which is the 

one pursued here is to design a dispersion-less FDTD scheme which essentially behaves like free 

space and hence any analytical time-domain data could be perfectly matched to it. Our quest for a 

dispersion-less FDTD scheme begins in Section 6.4.1 where a simple, rigorous and very accurate
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methodology is described in order to achieve super-isotropy using a 2-D extended-curl scheme. 

Once this is done, elimination of dispersion can be trivially achieved by appropriately scaling the 

speed of light. Afterwards the above methodology is applied in a 3-D space. For both cases the 

appropriate dispersion analysis is performed which demonstrates the potential improvement in the 

extended curl schemes’ performance.

6.2. A brief introduction to the diakoptics technique

The word “diakoptics” 1 stems from the Greek word “kopto” (kotttoj) which means “to tear” and 

the preposition “dia” (Sia)  that reinforces the word to follow; in our case the following word may 

be interpreted as “system”. Consequently, diakoptics is about system-tearing. The concept of di

akoptics was first introduced by Kron as an alternative and more efficient method for the solution 

of differential equations arising in the study of large scale systems [40], As a matter of fact Kron 

suggested that the partial differential equations that occur from the modeling of various physical 

phenomena may be solved numerically by employing a discretization technique different from the 

conventional finite-difference approximation of the unknown variables; his approach suggests that 

the solution domain can be represented by a discrete electric circuit model where its equivalent 

impedances and admittances are properly chosen. The great advantage of such representation is 

that the resulting equivalent circuit can be teared into smaller circuits (sub-sections) which allow a 

distributed solution of the corresponding differential equation and hence a reduction of the compu

tational load. A schematic representation of this scenario is shown in Fig. 6.1. Such an approach can 

be implemented for any system (mechanical, electrical etc.) that can be represented with an equiva

lent network of distributed elements and it is usually refereed to as the tearing-and-interconnecting

method. It has to be mentioned that the connectivity of the solutions of each sub-section is ensured 

‘A Greek translation could be “SiOMO'KTiKrj’', from the noun “6um/>TTTri<," which means “switch”.
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Fig. 6 .1: Electric circuit equivalent o f a solution domain.

by constructing additional sets of equations, which substitute the network branches that cross a 

tearing plane, based on the Lagrange multipliers theory. The tearing-and-interconnecting technique 

has been implemented in the context of Finite Elements [28] and has been shown to require less 

computational effort for the solution of the resulting system of equations.

6.3. Diakoptics implementation in the finite-difference time-domain method

As mentioned before the basic operational principle of diakoptics is to partition an electrically large 

circuit into several electrically smaller and simpler sub-sections whose characteristics can be ob

tained independently. These subsections are then connected together by using special interconnec

tion methods. Typically there are two types of methods: mode-to-mode and node-to-node intercon

nection. The first one employs the mode-matching technique [41] therefore it has been solely used 

for the modeling of closed structures such as transmission lines and waveguides which are charac

terized by a discrete spectrum and furthermore the corresponding mode functions are usually known 

(for example trigonometric functions in the case of a rectangular waveguide). The second intercon

nection method requires the knowledge of the time response of certain discrete points-nodes along 

the connection interfaces. Although this method seems more advantageous, since it is independent
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Fig. 6.2: Multiport networks, (a) Initial network configuration, (b) The second multiport network 
has been replaced by its equivalent impulse response.

of the mode function expression, it has been documented [42] that it is extremely memory consum

ing when it is applied to 2-D and 3-D problems. However this is not the case for 1-D problems 

where almost always FDTD modeling is very simple.

The time-domain diakoptics idea originates from linear system theory. The output y[n] of an 

one-port linear system can be determined from the convolution between its impulse response h[n] 

and its input x[n]. This means that the whole one-port linear system can be replaced by its impulse 

response. Similarly, a whole multi-port region of a system can be replaced by its corresponding 

impulse response matrix {gnm [fc]} which in a sense can be considered as a discrete time-domain 

Green’s function. With respect to Figs. 6.2(a) and 6.2(b) the multiport convolution is defined as:

N k
ym[^] =  y   ̂ y   ̂ 9mn [& ^ ] %n [& ] (6.1)

n= 1 k'=1

where gmn [fc] is the impulse response at port m,  at time instant t  =  k due to the unit excitation at 

port n  at time instant t  =  0 .

6.3.1. A simple example

In this section we demonstrate how FDTD diakoptics can be implemented for the propagation of a 

TEM wave. Therefore, we consider a TEM plane wave, propagating along the 2>axis consisting of
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Fig. 6.3: (a) Field components arrangement in the FDTD grid, (b) Implementation of FDTD di
akoptics.

the field components E y and H x. The discretized electromagnetic field components arrangement, 

according to the Yee scheme, is shown in Fig. 6.3(a). Now, if we model the same phenomenon 

using FDTD diakoptics the following steps have to be followed:

1. Terminate the FDTD grid at node nz +  1 so that the corresponding electric field component 

lies on the interface.

2. Calculate the impulse response of the right region.

3. Use the above impulse response to compute the E y field component at n z +  1 of the left part.

The above steps are shown schematically in Fig. 6.3(b). For the actual implementation of the above 

method some remarks have to be made:

•  For the impulse response calculation of the right part an auxiliary cell is utilized on the left of 

the interface, where the impulse is injected. More precisely for the E y component of this cell 

we have:

E h — < (6.2)
1 , n =  0  

0 , n  0

•  The time response of the electric field that lies on the interface is considered as the impulse 

response of the right part.
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•  The left part is updated using the standard FDTD update equations and the electric field 

component on the interface is computed using the convolution formula:

E y [nz +  1 ,k] =  ^ 2 g [ k -  k!] E y [nz , k'] (6.3)
k' = 1

For validation purposes the propagation of a TEM wave was modeled using both the conven

tional and the diakoptics FDTD schemes and the results are shown in Figs. 6.4(a)-6.4(f). As can 

be seen the computational domain is 6  m long and it was excited by a Gaussian pulse originating 

at 2  =  2 m. The left boundary was terminated using an absorbing boundary condition while the 

right one was short-circuited. Notice that the diakoptics interface is located at 2  =  3 m. Six dif

ferent snapshots are shown each one corresponding to time-step number 70, 90, 120, 250, 290 and 

320 respectively. In each figure the upper subplot corresponds to the entire domain solution while 

the lower on to the diakoptics domain solution. It is apparent that both solutions are in excellent 

agreement.

6.4. Single frequency optimization of 2-D extended curl schemes 

6.4.1. Formulation

For the purposes of this analysis we need to rewrite the spatial part of the numerical dispersion

relation for the 2-D extended-curl scheme in a more appropriate form as follows. It is

2

R  =

+

A x

1

A y

sin

sin

kx A x  
2

ky A y

a  +  2 (3 cos (kyAy^J 

a  +  2(3 cos (k xA xJ

(6.4)
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Fig. 6.4: FDTD solution vs. diakoptics FDTD solution.
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We perform the polar coordinate transform ykx , ky j  =  k (cos </>. sin </>), and assume a uniform 

discretization of a cell size h. After some straightforward algebra we obtain

It is important to note that this condition is still valid throughout the following analysis, for the 

derivative approximation consistency reason that we described in Chapter 4. Also this condition is 

the backbone of the stability analysis for general 2-D extended-curl schemes presented in Chapter 3. 

Consequently, the corresponding results are directly applicable here.

Now, since R  is a well-behaved function, it can be expanded in Fourier series with respect to 

the angle of propagation (f>. Bearing this in mind we recall that the system

is orthogonal on the interval [0 ,7r] [43], Although R  is defined on the interval [0, 2 7r] it can still be 

expanded with the respect to the above basis since R  (0) =  R  (</> +  7r). Hence, R  can be written as

+  0O

R  =  ^ 2  a mf m( ( t> ) =  a 0  +  Oi cos((/)) +  a 2  cos(2 4>) +  . . .  (6 .8 )
m= 0

where the expansion coefficients are a function of k h  and (3, or

The importance of the expansion in (6 .8 ) is that if one sets the coefficients of the angle dependent 

terms equal to zero then the values of R  can be made independent of the propagation angle, that is

R  =  2̂ < 2 (1 — 2 (3) +  (4 j3 — 1) cos (k  h cos <pj +  cos ('k h sin </>̂  —

Notice that we made use of the condition

a  +  2/3 =  1 (6.6)

fm  (<f>) =  cos (m 4>), m  =  0 , 1 , . . . (6.7)

(6.9)
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perfectly isotropic. However this is an ideal scenario which is not realizable as will be demonstrated 

later. But what can be realized, which is very beneficial for practical applications, is to tune the 

expansion coefficients so that R  varies slowly with respect to (p. In our case we are interested 

in single frequency problems, meaning that k h  is a constant, and hence the only available tuning 

degree of freedom is /3.

So, let us first calculate the expansion coefficients. For their determination we make use of the 

following identities

7T/*7T _

/  cos (x sin <p) cos (m</>) d 0  =  1 +  (—l ) m ^  Jm {x) 
Jo 1 1 2

ri\

JO (7717T \
~2^J 71 Jm(%)

(6 .10)

(6 . 11)

and

J  cos (x sin 4>) cos (x cos </>) cos (mq!>) dcp =  cos 1 +  ( - l ) f
7T

J m ( x V  2  (6 . 1 2 )

where Jm (-) is the m-th order Bessel function of the first kind. The first two integrals are listed 

in [44, pp. 441] while the derivation of the third one is straightforward by utilizing properties of the

trigonometric and Bessel functions. Consequently, we have

+oo
R =

2h2
2 (1 -  2/3) +  cos (m  4>)

m= 0

(6.13)

where

=  (4/3 -  1) 1 1 +  ( - l ) m ^  Jm (k h ^  +  cos tt Jm ( k h j \ -
(6.14)

- 4 / 3 c o s ( ^ )  [l +  ( - l )m ] ^ J m { k h y /2 )  

For the behavior of am we make the following observations

am =  0 , if m  =  2 u  +  1 , v  €  Z + 

am =  0 , if  m  =  2 k and k =  2 u  +  1, 

o-m 7  ̂ 0 if m  =  2 k  and k =  2 u, u G Z+

(6.15)
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Hence the only non-zero coefficients are given by

Q'iu =  (4 /3 — 1 ) 27t J/±u ( jz h j  +  (—1 )I'+ 1 4/37r J^v (k h V ^ J  (6.16)

Therefore, R  can be written in a Fourier series form as 

1

R  2  h2
2 (1 — 2 pi) +  ao +  0 4  cos (4 <j>) +  as cos ( 8  <f>) + (6.17)

Given the above expansion our goal is to minimize the coefficients corresponding to angle dependent 

terms, subject to the condition that the product k h  is a constant. First of all we observe that each 

of the above coefficients vanishes for a different value of (3 given by the solution of the following 

equation

a4l/ =  0 ! Jav ( k /i)  +  ( ~ i r + 1  Jau (ic h \ / t )  f3 =  J4„ (k  ĥ j (6.18)

c,

The above reveals that we cannot set the am coefficients equal to zero, simultaneously. Hence,

an optimum j3 could be derived by employing a least square minimization approach. Hence if we

T Tdefine the following matrices C =  [c4 C2  . . . ]  and D  =  [di d-z ■ ■.] then according to the least

square methodology, for a system of linear equations, f3 is given by

C T D

13 =  C T C  (6'19)

Our experimentation revealed that (3 converges to its final value by taking into account, in the mini

mization procedure, just the first two coefficients 0 4  and ag. As a matter of fact it turns out that for 

the computed beta, the values of the rest of the coefficients are negligible and they do not affect the 

minimization procedure. In Fig. 6.5 there is a graphic representation of [3 as a function of the grid 

resolution N \  where we recall that k h

Regarding to the behavior of /3 the following observations should be made. It can be seen that it 

is a monotonically decreasing function with an asymptote at /3 =  1/12. We recall that for (3 =  1 /12
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Fig. 6.5: Optimal f3 versus grid resolution N \ =  X /h  (2-D case).

we retrieve the 4-th order isotropic extended-curl scheme that we described in Chapter 3. Therefore 

we can conclude that in order to obtain a fixed resolution isotropy optimization, it is required to

It can be seen that the coefficients of the Taylor series have additional perturbation terms which 

contribution is controlled via the parameter e. Apparently the existence of these terms plays a 

regulatory role that results in a super-isotropic behavior for a desired grid resolution. Note that 

R  is not fourth order isotropic anymore. This implies that super-isotropy for a specific frequency, 

comes at the cost of a possible isotropy deterioration for other frequencies. This will be further 

demonstrated later in our analysis where the dispersion-anisotropy characteristics of the optimized 

scheme are examined.

perturb fS as Fig. 6.5 dictates. Naturally this is translated as a perturbation of the isotropic Laplacian

which is indirectly calculated during an FDTD time-step. In order to get a better insight of the

above, let us Taylor expand R  and set j3 =  7 5  +  f- It is
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Fig. 6 .6 : Deviation of R  with respect to its mean value versus angle of propagation (p. (3 optimal 
has been calculated for k h =  2 7r / 1 0 .

The effectiveness of the method presented so far is demonstrated in Fig. 6 .6 , where there are 

comparative plots of the R  deviation, with respect to its mean value over all angles of propagation, 

for three different values of (3. Note here that R  corresponds to the spatial variation of the numerical 

dispersion relation and it should not be confused with the numerical phase velocity. Numerical 

phase velocity is a function of both the spatial and temporal dispersions and will be analyzed in the 

next paragraph. So, the solid line corresponds to the Yee scheme (/3 =  0), the dashed line is the 

fourth-order isotropic extended-curl scheme (/3 =  1 / 1 2 ), and the dash-dotted one corresponds to 

the optimized (3. All three graphs have been computed for a grid resolution k h — 2 7r / 1 0 , where the 

optimal (3 is equal to 0.08443903506907. Notice that in order for the three graphs to be of the same 

order, and hence visually comparable, the values o f R  for (3 =  1 /12, and the optimal [3 scheme 

had to be magnified by a factor of 10 and 104  respectively. This clearly indicates the significant 

improvement that has been achieved in the scheme’s anisotropy behavior.
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6.4.2. Stability and dispersion

For an actual FDTD simulation, given a desired grid resolution N \,  an optimum value of ft is 

determined. This requires an intermediate step which is that of the correspondence between N \  and 

k h. These two quantities are related as:

k h  =  2  arcsin
1 . / ttS
8 Sm U (6 .21)

The above relation creates an issue because for the general 2-D extended-curl scheme, the Courant 

stability limit is given by [Chapter 3]

In other words the value of S c l  is determined by the value of (5. However, according to (6 .2 1 ) a 

Courant factor S  has to be chosen in advance, in order to correspond N \  to a kh . This may lead to a 

value for ft which results in a Courant stability limit S c l , less than S, and the scheme gets unstable.

Therefore, it is desirable to determine a Courant stability limit that guarantees stability regard

less of the ft value. Hence, from Fig. 6.5 we can see that the optimized values of ft are greater than 

1/12. Therefore, given that (6.22) is monotonically increasing we have

(6.23)

This implies that if we choose the Courant number in (6.21) equal to S  =  \ /3 /2  then the resulting 

value of ft will not lead to an unstable scheme. We recall that this is the Courant stability limit of the 

4-th order isotropic extended-curl scheme, meaning that in terms of time-step size the two schemes 

are equally good.

The numerical dispersion relation for the frequency optimized scheme is the same as the one
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for the general extended-curl schemes, that is

1  . ( u A t
sm

c A t  \  2

1 . / kxA x
—  sm -A—
A *  I 2

+
1

sm
ky A y

a  +  2(3 cos ( kyA y  ̂

a  +  2(3 cos (hxA x'j

(6.24)

A y  \  2

Based on the above in Fig. 6.7(a) there is the phase velocity behavior versus angle of propagation 

for a grid resolution of N \ =  10. The optimum value of (3 for this case was found to be equal to 

0.08444861640266. It can be seen that the scheme exhibits highly isotropic phase velocity charac

teristics. In the inset figure there is a detailed illustration of the phase velocity deviation with respect 

to its mean value. It can be seen that the amplitude of the deviation ripple is of the order of 10~8. 

This is 4 orders of magnitude less, than the (3 =  1 /12  scheme. Moreover in Fig. 6.7(b) there is a 

plot of the maximum absolute phase error per wavelength versus grid resolution, defined as:

qp =  360° max 1  - (6.25)

It can be seen that the scheme is second order accurate since the slope is -2.

Additionally in Fig. 6 . 8  there are comparative plots of the anisotropy error versus grid reso

lution, defined as the difference between the maximum to the minimum value of vp, relative to the 

speed of light c, for three different values of (3. It can be seen that super-isotropy has been achieved 

for the desired grid resolutions, however the isotropy performance significantly deteriorates for 

higher grid resolutions.

From the above analysis we can conclude that in order to fully exploit the highly isotropic 

characteristics of the optimized scheme the scheme needs to be improved in terms of dispersion 

as well. This can be achieved by making the numerical wavevector equal to the exact along an 

appropriately chosen direction. If this condition is satisfied then the numerical phase velocity for 

this direction is equal to the speed of light. But due to the super-isotropic behavior of the numerical
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Fig. 6.7: (a) Normalized phase velocity versus angle of propagation (f>, at N \  =  10. (b) Maximum 
dispersion error.
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phase velocity, the latter will be equal to the speed of light at any other direction as well, up to the 

order of the anisotropy error. Hence, at <j> =  0° (6.24) yields

If we modify the above as

sin
S -

1 . ( c u A t

— —  sin — — 
c A t  \  2

k o  h

1 k h  
=  - s i n  —— 

h  \ 2
(6.26)

sin

1 . ( u j A t \  1 . ( k h
. . —7— sin   =  — sm —

u o A t \  c A t  \  2 J h  1 2
(6.27)

then it is trivial to prove that

LU =  LOq  k  =  k g (6.28)

In others words this adjustment allows at a desired frequency l uq , along the 0 =  0° direction, the 

numerical wavevector to be equal to the exact one. Consequently, the scheme’s numerical phase 

velocity will deviate from the speed of light at an order of the anisotropy error. This adjustment 

in the numerical dispersion relation can be justified either as a scaling of the free space material 

parameters or as a modified finite-difference operator which is usually referred to as non-standard
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Fig. 6.9: Courant stability limit for the scaled scheme versus grid resolution N \.  The calculation 
assumes (3 =  1/12.

finite-difference [45,46]. The first approach dictates to modify permittivity and permeability as

. f k o h \  . f k o h
sm ——  sm

e =  S ------ A— t- lr -  e and /i =  S  — t-A— (6.29)
fu j0 A t \  r  /w 0 A f x ^

sm — -—  sm
2 )  V 2

The second one suggests to replace the conventional spatial and temporal finite-difference operators 

with the following ones

ko Ui+ 1 / 2  -
xUi =  ~2 ~ 7 k o h '  (6'30)

s m ( —

and

„ «”+ '/»  -
StU = T  . { w o A t '  <6'31)

sm
2

The above operators essentially introduce frequency dependent spatial and temporal increments, 

that is

2 . ( k 0 h \  A i _ 2 - f v 0 A t \
h =  —  sm ---------  and A t  =  —  sm — -—  (6.32)

k0 V 2  )  loo \  2 J

Both approaches have the same result which is the scaling of the speed of light as shown below
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The corresponding numerical dispersion relation is given by

sm fc0  h

sin
co o A t

sm
/  c o A t\

\  2 ■
=  sm COS(

k h

<2 I k h 
+  sm I —  sm<

a  +  2 (3 cos (k  h sin <ĵ j 

a  +  2/3 cos ( k h cos <ĵ J

(6.34)

and after some straightforward manipulations it can be shown that the stability condition is given 

by

h N \  [  s in  ( W7)
(6.35)A t <  arcsin

C 7T V 2  ( 1  -  4/?)

where iV\ is the desired grid resolution to perform the optimization. The behavior of the above 

Courant stability limit versus grid resolution, for /? =  1/12 is shown in Fig. 6.9. It can be seen that 

the maximum Courant number is monotonically increasing and has an asymptote at S  =  \ /3 /2 .  It 

has to be mentioned that since the optimal values of j3 are greater than 1/12  the stability limit can 

be slightly increased compared to the values shown in Fig. 6.9.

The performance of the scheme after the speed of light correction is demonstrated in 

Figs. 6.10(a) and 6.10(b). Specifically from Fig. 6.10(a) we can see that the same level o f phase 

velocity variation has been retained as that of the non-scaled scheme [Fig. 6.7(a)], but its values 

have been shifted upwards around the speed of light as desired. Finally the improvement in the 

reduction of the maximum dispersion error is depicted in Fig. 6.10(b).
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6.5. Single frequency optimization of 3-D extended curl schemes

6.5.1. Formulation

In 3-D the optimization methodology parallels the 2-D one. Hence we begin from the spatial part 

of the numerical dispersion relation for the general 3-D extended curl scheme given by

1  .

R  =

+

+

I kxA x  
—— sm — - —  
A x  I 2

1 . / k y A y
—— sm —
A y  I 2

1 . I kz A z
—— sm —- —
A z I 2

a  +  2 0  cos ( kyA y j  a  +  2 0  cos ('kzA z^  

a  +  2  0  cos (jtxAx^j a  +  2  0  cos (jczA z^

a  + 2 0  cos (jcxAx'j a  +  2  0  cos (jcyA yJ (6.36)

where ( k x , k y , k z ĵ =  k  (cos (f) sin 9,  sin 0  sin 9,  cos 9 ) .  In principle R  can be expanded in a series 

of spherical harmonics. Hence by following a procedure similar to the one described in the pre

vious Section, isotropy improvement could be achieved. Unfortunately the involved integrals are 

extremely difficult to be computed in closed form (at least to the author’s knowledge and ability). 

Therefore an alternative approach is attempted.

For brevity let us set X  =  cos ( jcx A x j ,  Y  =  cos ( j t y A y ' j ,  and Z  =  cos (j;;z  A z ) . We 

rearrange R  as a polynomial of 3. It is

R  =  3 

+

2 - 2 ( X  +  Y  +  Z )  +  2 ( X Y  +  X Z  +  Y Z ) - 2 X Y Z  /32 +

6  +  4  ( X  +  Y  +  Z )  -  2  ( X Y  +  X  Z  +  Y  Z ) P +

+  l - \ ( x  +  v  +  z ) (6.37)

Now we assume that the 3-D space is sliced </>-wise according to a partition { 0 ^}^. Hence for each 

(f)j, a plane is defined where R  is dependent only on 9.  Consequently by employing a procedure 

similar to the one described in the previous Section, for each one of these planes, a 0  can be cal

culated so that R  is independent of 9.  Therefore we will proceed as follows: for each <pj we will
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expand R  with respect to 9 and then we will obtain the optimum /3 via a least square approach which 

takes into account all It is

R  =

+

6  +  3 A m cos (m  9) (32  +
m =0 

oo
6 + E  B m cos (m 9) /3 +  -  +  ^  C m cos (m  9) (6.38)

m = 0  m = 0

where the expressions for A m, B rn and Cm are shown in (6.39), (6.40) and (6.41). For a given 4>j 

the value of [3 for which the coefficients of the angle dependent expansion terms vanishes given by

3 Am (32 +  B m (3 +  Cm — 0 (6.47)

The above equation needs to be satisfied for all d>j therefore we need to solve the following over

determined system of non-linear equations.

3 A  /32  +  B (3  +  C =  0 (6.48)

where

A  = A 1 A 2  • • • A 1 A 2  . . . A 1 A 2  . . .

</>N

(6.49)
4>i 4>j

Matrices B  and C  are created in the same manner. In this case the value of (3 is obtained with 

successive approximations. We define

/m  (P) — 3 A m p 2 +  B m [3 + (6.50)

Given an initial guess /7°, then the perturbed value f m ({3(i +  A/3) is approximated as

fm  ((3° +  A/3) »  f m (/3°) +  f m (/3°) A /3 =  0 (6.51)

Hence by including all the available information, A/3 is given by

f T (/3°) f( /3 °)
f  (/3°) +  f'(/3 °) A /3  =  0  =>■ A /3 =  - fT  ^  f 7 (6.52)
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Am  —

= - 2  { [1 + ( - 1)"*] Jn ( k h  c o s (ĵ j +  Jm ( k h  s in <frj +  cos 77 J m {k h ^ j j  +

7T

x Jn ( k h p i j  +  Jm { k h ( ) 2 j  +  2  cos (m 6s) Jm ( k h p s  ̂ +  2  cos (m dc) Jm (k h p ^ j

2  [l +  ( - l ) m] ^  [cos (mOz) Jm (k h p ^ j  +  cos (m04) Jm [k h p ^ j  j (6 .3 9 )

Bra -

=  4 |  [1 +  ( - l ) m] ^  Jm ( k h  cos ^  +  Jm ( k h  sin (f)̂  +  cos ^ }  -

7T
- 2 [i +  ( - i n j x

X Jn (k h p i ' j  +  Jm (k  h p2) +  2 cos (m 9s) Jm ( j th p s ĵ +  2  cos (mOc) Jm (k h p ^ j  j-

(6 .4 0 )

C m  =

=  {  [1 +  ( - ! ) m] ^  Jm ( k h  cos (^  +  Jm ( k h  sin +  cos j  7r Jm (k  h j  |

(6 .4 1 )

Pi =  sin(/> +  cos 4> P2  =  — s in 0  +  cos 0 (6 .4 2 )

P c  =  \ A  +  cos2  ( f ) p s  =  \ J  1 +  sin2  <j> (6 .4 3 )

P3 =  \ A  +  Pi P4 =  \ / l  +  p| (6 .4 4 )

tanPs =  - 7— 7 
sin<p

ta 11 Pc =  — - 
COS 0

(6 .4 5 )

tan $ 3  — — tan $ 4  =  — (6 .4 6 )
P i P2
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Fig. 6.11: Optimal 0  versus grid resolution N \ =  X /h  (3-D case).

A new estimate for (3 is defined as

(31 =  0 °  +  A  (3 (6.53)

The previous procedure is repeated until some convergence criterion is satisfied. In Fig. 6 .11 there 

are the optimum values of 3  versus grid resolution. Also there are the optimum values of (3 calcu

lated for the (p — 0° and the <j> =  45° planes, individually. It can be seen that especially for low 

grid resolutions there is a significant difference between the (3 values for the two planes. This im

plies that the value of (3 that achieves angle independence over the one plane, it does not certify the 

same over the other. Therefore the overall optimum (3 is expected to improve isotropy at an average 

sense and consequently super-isotropy cannot be achieved, as in the 2-D case. More precisely in 

Figs. 6.12(a) and 6.12(b) there are the R  variations over the q =  0° and the 4> =  45° planes for 

different values of 0. It can be seen that for the optimal 3, R  behaves overall more isotropically, 

however this improvement is only in the order of 1 0  for the reasons described previously.
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6.5.2. Stability and dispersion analysis

The stability and dispersion analysis for the 3-D case is similar to the 2-D one with the only differ

ence being that the general Courant stability limit is given by [Chapter 4]

1
ScL  = (6.54)

■s/3 |1 -  4/?|

Similarly the speed of light scaling procedure is directly applicable here. For completeness the 

modified numerical dispersion relation is given below

sm
ko h

sm
u>o A t

sin
coAt

(6.55)

sin
2  I kh  cos (j> sin 6

a  +  2 0  cos (k h  sin 0  sin

+  sin

+  sin

2  (  kh  sin 0  sin ( a + 2 0  cos (k h  cos 0  sin 9̂ j

a  +  2(3 cos ( k h c o s ( 

a  +  2  (3 cos (k h  cos t

k h cos 0
a  +  2 (3 cos ^kh  cos (f) sin 9 a  +  2 (3 cos ( kh  sinl  (f) sin 6 j (6.56)

and the corresponding stability limit can be easily shown to be the following

A t <  arcsm
C 7T

sm

VS  (1 -  4 0 )
(6.57)

Moreover, in Fig. 6.13(a) there are comparative plots of the anisotropy error versus grid reso

lution. It can be seen that for the optimized 0 , the error curves exhibit shallow nulls, almost three 

orders of magnitude more that the corresponding 2-D ones. This has a direct impact on the disper

sion error performance. As shown in Fig. 6.13(b) for the optimized grid resolutions the dispersion 

error has been reduced but not as significantly as in the 2-D case.

6 .6 . Numerical examples

In this section numerical results are presented to support the previously analysis. We examine the 

propagation of a monochromatic plane wave in an FDTD domain. For this experiment, a 130 x
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130 cells domain is chosen where the cell size is h =  A/30. The Huygens’ box is placed within

2 0 -cells from the computational domain boundary, and the latter is surrounded by a 1 2 -cell thick 

perfectly matched layer. A monochromatic TEM (E y ,H z) plane wave is generated, propagating 

along the 4> =  0 ° direction.

Two different cases were compared, namely: (3 =  1 /12  and (3 optimized at N \  =  30. For 

both case the speed of light was adjusted, however the adjustment was made with respect to the 

wavevector along the cj> =  45° direction, given by

transform was performed to extract its magnitude and phase. These quantities were compared to the 

corresponding analytical ones and the results are shown in Figs. 6.14(a)-6.15(b). The superiority of

orders of magnitude and the magnitude variations are constant throughout the injection area.

7T S

~N~x
(6.58)

8/3

We let the plane wave propagate for a sufficient number of time-steps and then a discrete Fourier

the optimized scheme is apparent where we can see that the phase error had been decreased by two
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(a) Magnitude.

° 0 1 0 M » « M « 7 0 M »

(b) Phase.

Fig. 6.14: Plane wave injection error, (j =  1.12.
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(a) Magnitude.

0 10 2 0 M 4 0 M M 7 0 M M

(b) Phase.

Fig. 6.15: Plane wave injection error, f3 optimized at N \ =  30.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

We have described a general framework for the design of stable FDTD schemes with improved 

approximations of the transverse Laplacian term associated with the curl-curl operator. Depending 

on the Laplacian approximation the resulting scheme can be more isotropic, less dispersive and 

have a higher Courant number than the conventional Yee algorithm and many of its improvements 

found in the literature. Representative numerical experiments were performed that verified the 

theoretically expected behavior.

There are two main points that should be emphasized with respect to this work. First, this 

development of an improved extended transverse curl should not be confused with higher order 

approximations of the individual partial derivatives involved in the curl (as in (2,4) schemes). Such 

approaches extend the FDTD stencil linearly in the direction of the derivative, risking the acquisition 

of superluminal information in order to better approximate the derivative. The 9-point extended curl 

here minimizes the amount of superluminal information acquired since, as shown in Chapter 3, the 

extra terms can be seem as mapping unto the comers of the cell in question. Thus the increased 

isotropy is gained at no expense to the dispersion. In fact dispersion is reduced overall in the 

sense that the Courant number can be increased if desired all the way to one and still stability is 

preserved. A higher Courant number implies a more efficient computational space since to every 

frequency available via a Fourier transform of the time history corresponds a real wavenumber. To 

see this consider conventional 2D FDTD with Courant number S  =  0.707 so that A t — 0.707 h/c . 

The limit radian frequency of the Fourier Transform is uum =  n /A t  which might lead us to believe 

that we can see wavenumbers as high uium/c  =  7rc/(0 .707he) =  1 .414n /h .  The reality is that 

the discrete nature of h limits the highest possible wavenumber in our space to ir/h . Therefore the
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frequency domain spectrum between 7r /A t  and 0.707 i r /A t  is really wasted since it can never be 

sampled in our discretized space. A Courant number of one makes the limit frequency and the limit 

wavenumber of the discretized space time of FDTD match, wasting nothing.

Second, the consequences of improving the Laplacian cannot be over emphasized. Although 

most FDTD practitioners are used to living with the dispersion problems of FDTD, it can be seen 

that the real problem is not dispersion itself but the anisotropy of that dispersion. If, as we show 

here, the anisotropy of FDTD can be virtually eliminated (the extended curl renders the scheme 

fourth order accurate in isotropy) then frequency domain dispersion can be readily dealt with by 

other means. That is, since in the extended curl all waves in all directions suffer from the same 

dispersion, a simple algebraic dispersion correction [2 ], works globally to render all the results of a 

time harmonic steady state FDTD run virtually indistinguishable from a frequency domain solution 

in the same space. The implications are wide ranging. For instance, the injection of time harmonic 

plane wave fields into FDTD domains now becomes simply an exercise in correct mapping of the 

equivalent currents from the frequency domain continuum into the discretized world of FDTD.

This work provided a comprehensive study of the FDTD method as applied to M axwell’s equa

tions. Although many aspects of the method were explored, several useful conclusions were drawn 

and many interesting improvements were suggested, there are a lot of things that need to be further 

examined. First of all an elegant solution for the treatment of PEC boundaries is highly desired. 

Image theory does provide a remedy, however it is hard to program when arbitrary geometries need 

to be modeled, and in principle it is not accurate when finite domains are involved. In addition,

the behavior of the extended curl operator along material interfaces should be examined to ensure 

accurate material modeling.

Another challenging task is to combine extended curl schemes with higher order time integra

tors. The Runge-Kuta scheme is an option however it introduces artificial dissipation and hence one
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has to resort to very small time-steps. One very interesting and promising technique is symplectic 

integrators [47,48] since they provide higher order accuracy and they are non-dissipative, since they 

are based on the modeling of a Hamiltonian system.

Finally, it would be of great interest to achieve wideband optimization of FDTD schemes. A 

trivial approach to this would be to attempt a multi-objective optimization of the numerical dis

persion relation. A more radical and revolutionary approach would be to attempt a time-frequency 

discretization for Maxwell’s equations. Such methods are very common in signal processing and 

allow for a more compact represtation of time-varying signals.
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