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ABSTRACT

A class of finite-difference time-domain (FDTD) schemes is developed, for the solution
of Maxwell’s equations, that exhibits improved isotropy and dispersion characteristics. This is
achieved by improving the two-dimensional Laplacian approximation associated with the curl-
curl operator. The development of this method is based on the observation that in a two-
dimensional space the Yee-aigorithm approximates the aforementioned Laplacian operator via a
strongly anisotropic 5-point representation. It is demonstrated that with the aid of a transversely
extended curl operator any 9-point Laplacian can be mapped onto FDTD update equations. Our
analysis shows that the mapping of an isotropic Laplacian approximation results in an isotropic and
less dispersive FDTD scheme. The properties of the extended curl are further explored and it is
proved that a unity Courant number can be achieved without the resulting scheme suffering from
grid decoupling, an artifact of staggered-collocated grids. Then it is demonstrated that the above
methodology is directly applicable in three-dimensions. The properties of the resulting schemes are
analyzed and it is found that they exhibit the same favorable characteristics as their two-dimensional
counterparts. Additionally, possible modifications for the extended curl operator are proposed which
result in higher order performing schemes. First an alternative extended curl operator is derived
based on a 25-point isotropic Laplacian discretization. It is shown that the corresponding scheme is
fourth order accurate in space, exhibits isotropy up to sixth order and has a higher Courant number
than other candidate schemes. Second, the extended-curl operator is combined with fourth order
time derivatives via a modified equation approach. The resulting scheme is sixth order isotropic and
exhibits a Courant number that is almost unity. Finally, a rigorous, simple and accurate method-
ology is described which allows the optimization of the original extended curl scheme for a given
grid resolution. Representative numerical simulations are performed that validate the theoretically

derived results.
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CHAPTER 1

INTRODUCTION

The Yee [1] algorithm is undoubtedly one of the most popular finite-difference approximations
to Maxwell’s equations, mainly due to its conceptual simplicity and ease to implement. Its main
characteristic is that Maxwell’s equations are treated in a coupled curl form, and in a leapfrog time-
stepping manner. In addition the involved first order partial derivatives are approximated via second
order accurate central finite differences, on a staggered spatio-temporal grid arrangement. Yet, the
scheme suffers from numerical dispersion as well as phase velocity anisotropy [2]. Their deteriorat-
ing effects become very pronounced when the problems under study involve long integration times
or results are required over a wide frequency range. Obviously, the naive approach to mitigate the
effects of these drawbacks is to use finer grids, however this is not always feasible due to the in-
crease of computational cost. Hence, despite its level of maturity the development of FDTD is still
a topic that attracts a lot of attention, and efforts are made to expand its applicability and improve
its accuracy.

The inherent dispersion and anisotropy errors of the Yee algorithm have so far stimulated a
great research effort towards the development of improved FDTD schemes. The latter can be viewed
as different flavors of the Yee algorithm since they retain many of its characteristics. The reasonable
trend in order to tackle the dispersion and anisotropy errors is to employ higher order approximation
to the first order partial derivatives. This path has been successfully followed by many researchers.
Selectively we mention the work of Fang in [3] and Yefet and Petropoulos in [4], where second
order accurate in time and fourth order accurate in space schemes were presented. Along similar
lines Zygiridis and Tsiboukis in [5] as well as Sun and Trueman in [6] derived optimized versions of

the Fang scheme by appropriately modifying the weights of the spatial derivatives’ approximation.
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Also Hadi and Piket-May in [7] attempted an improved (2,4) scheme by applying Ampere’s law
on several loops. An alternative formulation is the one presented by Young et al. in [§8]. The
proposed scheme combined compact finite-differences [9] for the spatial derivatives, with a Runge-
Kuta integrator for time advancement. Of particular interest are those FDTD schemes developed
on hexagonal grids, such as the one presented by Liu in [10] and recently by Xiao et al. in [11],
which exhibit superior isotropy characteristics and reduced dispersion errors. Furthermore, in [12]
dispersion error reduction was achieved by introducing artificial anisotropy in the regular FDTD
update equations. This can be done through appropriate modification of the constitutive parameters
of the modeled material. The material properties can be tuned and dispersion characteristics can
be optimized with respect to a single frequency. Finally Wang and Teixeira in a series of papers
[13-17] gave an elaborate analysis on how to eliminate the dispersion error over a certain frequency
bandwidth or a particular angular span. Note that a detailed comparison of several low-dispersion
schemes can be found in [18], while a very informative listing of past and current trends in FDTD
improvement can be found in [19]. A very detailed overview of higher-order time-domain methods
has been given by Hesthaven in [20].

The work presented in this dissertation examines the performance of FDTD schemes from a
different standpoint. This approach is motivated by the fact that Maxwell’s equations essentially
propagate electromagnetic waves through the curl-curl operator, whose fundamental element is the
two-dimensional transverse Laplacian operator. The importance of the Laplacian term for accu-
rate modeling of wave propagation phenomena has been demonstrated in [21], where it was shown
that in the case of the 2-D scalar wave equation, a more isotropic Laplacian representation ensures
highly isotropic wave propagation. Unfortunately, since FDTD works with Maxwell’s equations in
individual curl form, the existence of this term is masked and hence its importance can be easily

neglected. This is further supported by the fact that the Yee algorithm, during a time-step, indirectly
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approximates the “hidden” Laplacian term via a strongly anisotropic 5-point representation. As lu-
cidly demonstrated in the following Chapter this is solely responsible for the scheme’s poor isotropy
performance. Consequently, its amelioration is likely if the Laplacian term is approximated more
accurately. Obviously since the direct mapping of a Laplacian approximation into FDTD updating
in impossible, the goal is to improve the curl operator in FDTD in such a way that it yields indirectly
a “good” and “as isotropic as possible” transverse Laplacian. It is demonstrated that with the aid
of a transversely extended curl operator any 9-point Laplacian can be mapped onto FDTD update
equations. Our analysis shows that this modified curl operator discretization results in a family of
schemes with improved dispersion and isotropy characteristics.

The following remarks should be made regarding to the material of this dissertation. The
presented approach should not be confused with those that approximate the 2-D and 3-D Maxwell’s
equations with the 2-D and 3-D scalar wave equations respectively. This is better justified from
the 3-D formulation of our method, where the extended curl operators are defined with respect to
the 3 transverse 2-D Laplacians and not by the 3-D one. Moreover the following guidelines were
followed during the course of this research. First of all we were parsimonious with respect to the
finite-difference stencil extension. Our main objective was to examine what is the best we can
get by modifying, simple and as localized as possible finite-difference approximations. Second,
the optimization of “exotic” stencils was avoided. For these cases there is the ultimate alternative,
pseudospectral methods, which take into account the entire computational domain. In addition,
optimization problems may not be challenging anymore as characteristically John von Neuman had
mentioned: “With four parameters I can fit an elephant, and with five I can make him wiggle his
trunk.” ! Third, we had to mathematically justify every suggested modification and by no means

treat the scheme as a black box which obeys prescribed rules. Finally, it was desired to preserve

'Freeman Dyson, “A meeting with Enrico Fermi” (2004) Nature 427, p. 297
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FDTD simplicity and hence make the resulting schemes easy to program and easy to incorporate
in existing FDTD codes. Also it should be noted that throughout this document the second order
accurate leapfrog scheme is adopted for time integration.

The outline of this dissertation is as follows. In Chapter 3 the implementation of an extended
curl operator in 2-D finite-difference time-domain schemes is described. The appropriate stability
and dispersion analyses are performed and their improved characteristics are demonstrated. The
properties of the extended curl are further explored and it is proved that a unity Courant number can
be achieved without the resulting scheme suffering from grid decoupling.

In Chapter 4 the extended curl operator is implemented for 3-D finite-difference time-domain
schemes. As before a stability analysis is performed and the dispersion characteristics of the pro-
posed scheme are investigated. It is shown that in this case the proposed scheme exhibits the same
favorable characteristics as its 2-D counterpart.

The ability to achieve higher order performance by utilizing the extended-curl operator is ex-
amined in Chapter 5. Hence the mapping of a 25-point isotropic Laplacian on FDTD update equa-
tions is demonstrated, and it is shown that the corresponding scheme is fourth order accurate in
space and exhibits isotropy up to sixth order. In addition a higher order isotropic FDTD scheme
is described which combines an extended-curl discretization along with artificial dispersion terms,
realized though weighted third order temporal derivatives.

Finally in Chapter 6 a simple and accurate methodology is described in order to achieve super-
isotropic characteristics and eliminate the numerical dispersion of an extended curl operator based
scheme. The methodology is rigorously developed for both 2-D and 3-D schemes and a detailed

stability and dispersion analysis of the resulting schemes, is performed.
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CHAPTER 2

AN INTRODUCTION TO THE FINITE-DIFFERENCE TIME-DOMAIN METHOD

2.1. Basic principles

Electromagnetic phenomena on the macroscopic scale are governed by Maxwell’s equations which

for a linear, isotropic and non-dispersive medium, can be written as:

VxE=-8B-J"-¢H 2.1

V xH=208D + J¢ + oE 2.2)

where the terms JI* and J{ correspond to the impressed magnetic and electric current sources,
respectively. Notice that Maxwell’s equations in their above form account for the existence of both
lossy dielectric and magnetic material by including the corresponding conduction current terms, i.e.
oE and o*H. If we move the temporal and spatial partially differentiated terms to opposite sides,

then the system of (2.1) and (2.2) yields the following system of initial value problems:

B =-VxE-J"_oH (2.3)

6D =V xH - J¢ — oE 2.4)

The above coupled system of equations forms the basis of the FDTD algorithm for solving, in the
time-domain, three dimensional electromagnetic wave interaction problems. More precisely, the ba-
sic concept of FDTD is the solution of (2.3) and (2.4) in a discrete space and time. This requires that
all temporal and spatial derivatives be approximated numerically using finite differences. Obviously
the accuracy of the FDTD solutions depends on the accuracy of the finite difference schemes used.
The latter is determined by calculating the local truncation error of the numerical approximation

which is usually achieved by Taylor-expanding the appropriate quantities.
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2.2. The Yee grid

In 1966 Kane Yee presented a set of finite difference equations for the system of Maxwell’s equa-
tions [1]. This set of finite differences exist on a structured grid which consists of orthogonal paral-
lelepipeds with a size of Az x Ay x Az, usually referred to as cells. A unit cell of Yee’s grid along
with the spatial arrangement of the field components is shown in Figs. 2.1(a) and 2.1(b). Notice that
the electric and magnetic field components are staggered by a half cell size along each direction.
Based on this spatial field arrangement Yee constructed centered second order finite difference ap-
proximations for the spatial derivatives. For example the partial derivative of F, with respect to =
is given by:

Eyiv1 — Eys
82 Eyir1)s = —y’—’“ﬂﬂ + O(Az?) 2.5)

Moreover, a similar staggering is applied in time where the electric field components are com-
puted at integer time-steps nAt, while the magnetic field components at (n + 1/2)At¢ time steps.
Hence the partial derivative of £, with respect to ¢ is given by:

En+1 _ En—l

B ERTY? = —i—ATy—— + O(At?) (2.6)

This leapfrog time-stepping is a very desirable property of FDTD mostly because it is non-
dissipative. For example, consider the case where the gain of an antenna or the scattering inten-
sity of some object needs to be calculated. Any artificial dissipation will affect the radiated power,
and results in erroneous predictions, especially if long integration times are involved. In addition the
leap-frog scheme is fully explicit and hence the burden of matrix inversion is avoided. Conceptually
the leapfrog scheme suggests that a “future” field value is predicted by the “present” one, plus the
appropriate correction-source term. Hence, the field components are computed at each spatial point
and then moved forward in time, in a time marching scheme also known as “update equations”.

In what follows we derive the update equations for the E, and H, components. From (2.3)
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Fig. 2.1: Yee grid. (a) E field components. (b) H field components.
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and (2.4) we have:

&E, = =(8,Hy — 0yH, — J;; — 0 E,) (2.7)

oo -

OH: = (0 Be = 0c By = T2y = 0" H) (2.8)

Hence, according to the Yee-cell based FDTD conventions described previously, the corresponding

update equations for these components are given by:

n+1 — ﬂ! n é_t
—_ 2e - _l_ £ X
; = 2 S -T—
igk+1/2 14+ 28t TFligeire 14 AL
n+1/2 n+1/2
y Ylit1/2,5,k+1/2 Ylic1/25k+1/2
Az
n+1/2 n+1/2
“ligyyaksye T lig-1/2k41/2 e |Pt1/2
Ay # 5. k+1/2
2.9)
n+1/2 — AL iy At
_ {d + __H
z - * z *
i4+1/2,j+1/2,k 1+ ax}t i+1/2,541/2,k 1+ UZMAt
n n n
E, ~ B, E, — E,
i+1/2,9,k i+1/2,j+1.k i,j+1/2,k i+1,j41/2k Jm n
Ay Az 2Mir1/2,541/2,k
(2.10)

The material properties involved in the update equations can in general be functions of space; con-
sequently they have to be evaluated at the same spatial point as the updated quantity. For example,

for the values of permittivity related to the E, update equation we have:
e(z,y,2) = e(iAx,jAy, (k + 1/2)Az) @2.11)

Obviously the update equations for the other field components can be derived in a similar manner.

The Yee cell is used consistently throughout this dissertation.
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2.3. Numerical dispersion

The discrete nature of the numerical algorithms that solve Maxwell’s equations using finite-
difference approximations cause dispersion of the simulated wave modes in the computational grid.
Therefore, in general, the group and phase velocities of a discrete propagating wave in the FDTD
grid are different from the velocities of the same wave propagating in a continuous medium. The ex-
istence of numerical dispersion can severely deteriorate the accuracy of numerical results, and hence
it must be dealt with. The dispersive nature of the FDTD algorithm and its mitigation is extensively
analyzed in the following chapters. Hence, for completeness only the most important conclusions
are mentioned here. A dispersion analysis can be performed by taking the spatio-temporal discrete
Fourier transform of the the FDTD update equations, which is equivalent to substituting a solution
of the form

“?,j,k — ej(wnAt—kziAa:—kyjAy—k;kAz) (2.12)

This procedure yields an equation that relates the numerical wavenumber k to the wave frequency

—1— sin %ZAZ
Az 2

(2.13)

w.

9 - 2
_1_ in w__At = L 3 _._k“'”AI
cAts 2 | Az sl 2

where ¢ = 1/,/pe€ is the velocity of light in the medium. Notice that in the case of a very fine

2

_|_

discretization (Ax, Ay, Az — 0), the above equation yields:

w2 ~ 1.2 7.2 7.2
<E) ~RE 4R+ R (2.14)

which is the well know constraint equation that governs the propagation of a monochromatic wave,
in a general 3-D medium. Qualitatively this suggests that numerical dispersion can be reduced to

any desired degree if a fine enough mesh is employed.
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An interesting result can be obtained if we rewrite Maxwell’s equations in matrix form. It is

T Lc||[E°
=0 (2.15)
—-+C T | |H

where C corresponds to the Fourier transform of the discrete curl operator given by

0 —ﬁ sin (Eﬁ%) ALy sin (J"—ic 2Ay)
C = Klzsin (—Z——i“ 2Az) 0 —ﬁ sin (—z—ic 2Am> (2.16)
_ALy sin (—H—fc 2Ay> ﬁsin (—fcszx) 0
T corresponds to the Fourier transform of the temporal finite differences, given by
1 . [wAt
T = E S (—2—) I3><3 (217)

and [E® H°]" = [EQ E E? H? HY HY)". Now, if we multiply the first three equations in (2.15)
by A%c sin (E%-), ALy sin (E%), and ﬁ sin (%) respectively, and then add the resulting

equations by parts we obtain
1 . [wAt
—A—t' sin —2— X

- - - (2.18)
1 . [ kAz 0 1 . [ kAy 0 1 . [k Az ol _
x [Xa_:sm< > ) sz-}—ngn( 5 8Ey+A—zsm 5 eE;| =0

The above relation is the spatio-temporal Fourier transform of the finite-difference approximation

to Gauss’ Law, or

OV -(cEgzeEBy,eE,) =0 (2.19)

which essentially proves the flux-conservative nature of the Yee algorithm. In the same manner, one

can prove the conservation of the magnetic flux.
Although numerical dispersion is introduced individually by the temporal and spatial dis-
cretization, the latter also introduces numerical phase velocity anisotropy. This artifact is described

as the wave speed being a function of the propagation angle. Its effects are demonstrated, for a 2-D
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Fig. 2.2: Numerical phase velocity anisotropy for two different resolutions.

space, in Fig. 2.2. First of all it can be seen that anisotropy can be reduced by increasing the resolu-
tion. In addition, we observe that for this case the best approximation to propagation in a continuous
medium can be achieved along the diagonal of the Yee cell (¢ = 45°). The same can be achieved
in a 3-D grid for propagation along the long diagonal of the Yee cell, that is (¢, §) = (45°,54.7°).
This behavior is due to the fact that the order of the temporal and spatial errors are the same and
opposite in sign. Hence, they can cancel each other and given that the maximum allowable time-step
(Courant limit) is used, the numerical wave speed can acquire its physical value. This is a very fa-
vorable characteristic of the Yee algorithm which is not observed in alternative schemes with spatial
accuracy higher than the temporal one. In these cases maximum accuracy at a specific frequency
can be achieved if time-steps smaller than the Courant limit are used.

Furthermore, dispersion analysis reveals that the Yee grid exhibits characteristics similar to
that of a low-pass filter, whose response is controlled by the grid sampling resolution Ny = A\/Az.
Therefore, to obtain un-disrupted pulse propagation in an FDTD grid, its resolution should be cho-

sen so that the frequencies of interest are far below this equivalent filter’s cutoff frequency.
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2.4. Stability

Finite difference schemes require the time increment At to have a specific bound relative to the spa-
tial discretization Az, Ay and Az. This bound is necessary to prevent numerical instability, which
is an undesirable property of explicit schemes. The derivation of this bound for Yee’s algorithm is

based on the von-Neumann stability criterion which results in the following condition:

At < ! (2.20)

—C\/71+1+1
Azr2  Ay? A2

This is usually referred to as the Courant-Friedrichs-Lewy (CFL) condition. Qualitatively the above

condition suggests that in order to ensure the stability of a numerical scheme, for a hyperbolic
equation, the temporal and spatial discretization have to be properly chosen so that we can “catch
the fastest possible propagating wave”! in the grid. It has to be mentioned that the CFL condition is

a necessary condition but not a sufficient one.

2.5. Absorbing boundary conditions

The most important issue for the development of the FDTD method has been the efficient and accu-
rate solution of electromagnetic problems in unbounded regions. This requires the truncation of the
computational domain with appropriate absorbing boundary conditions (ABCs). These boundary
conditions should allow the outward propagating waves to exit the computational domain with as
little reflection as possible. Several ABC schemes have been proposed so far with the one intro-
duced by Mur [22] being the most popular and the most widely used. However these ABCs exhibit
best performance only in particular cases, for instance if the impinging wave is plane and is incident

normally upon the ABC boundary.

'A tactic initially introduced in the area of surfing!
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Fig. 2.3: TMz wave impinging on a PML half space.

A major breakthrough in this area was made by Berenger when he introduced a highly effective
ABC, usually referred to as the perfectly matched layer (PML) [23], [24], [25). The PML can be
considered as a lossy material that surrounds the problem domain, and it can absorb electromagnetic
waves at arbitrary frequencies and angles of incidence. This is achieved by splitting the field com-
ponents, inside the PML, into two orthogonal subcomponents. Hence, the waves impinging upon
the PML, are decomposed into artificial plane waves traveling along the major axis. Then, by prop-
erly choosing the PML’s electric and magnetic conductivity these plane waves can be attenuated,
and ideally vanish.

For the studies documented in this dissertation, a PML based on a “lossy uniaxial medium”
was implemented. This was initially proposed by Sacks et al. in the context of the Finite-Element-
Method [26], and was later successfully extended for the FDTD method by Zhao and Cangellaris
[27] as well as by Gedney [28]. This PML implementation has the advantage that it does not
require field-splitting and hence its formulation is not based on a mathematical “trick”, but rather

on designing a medium with the appropriate material properties. In the aforementioned papers it
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was shown that by properly choosing the material parameters of a uniaxial medium, the latter can
be perfectly matched to free space for any angle of incidence, and at the same time attenuate the
transmitted waves in it.

Although a very comprehensive analysis of this PML realization can be found in the previously
mentioned papers, for completeness some of its details will be reported here. More precisely, with
respect to the scattering scenario shown in Fig. 2.3, a reflectionless interface between Region 1 and

Region 2 can be created if the permittivity and the permeability tensors of Region 2 are chosen to

be: _ - _ -
szt 0 0 s;1 0 0
B2=€1| 0 s, O Bo=pm| 0 s, O (2.21)
I 0 0 s, | i 0 0 sy ]

Furthermore, it is quite straightforward to show that, the wave velocities along the z-direction in

Region 1 and Region 2 are related as shown below:

,821: = Sz ﬁlx 2.22)

[
jwel

Therefore, if weset s, = 1 + the wave velocity in Region 2 becomes:

g .
/32:5 - (1 + — ) ﬂl:c = ﬂlm — Jo 1 Cos ¢z (2-23)
Jwer

Consequently, the transmitted wave in the PML, along the z-axis normal to the interface between
Regions 1 and 2, propagates with the same velocity as the incident wave, while simultaneously it
gets attenuated. It has to be mentioned that the wave velocities along the y-axis are also identical,
which stems from the fact that the two media are matched.

Of particular importance for the realization of an effective PML is the choice of the conduc-
tivity profile. The properties of the PML have been chosen so that the latter is perfectly matched

to the solution domain medium in a continuous space. However the FDTD domain is inherently
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Fig. 2.4: Conductivity profile.

discrete and hence the electric and magnetic field components, along with the material properties,
are spatially staggered. Therefore, a direct FDTD implementation of the PML without taking into
account the staggering field component arrangement, will result in undesired reflections. To reduce
this reflection error the PML losses along the direction normal to the interface should gradually rise

from zero. More precisely the conductivity is chosen to vary spatially as:

02() = Oma (%)m (2.24)

where d is the PML depth and m is the order of the polynomial variation. A graphical representation
of typical conductivity profile is shown in Fig. 2.4.

In what follows numerical experiments are presented that demonstrate the effectiveness of the
PML. A 2-D domain, 100 x 50 cells long, was examined, as well as a 3-D one, 100 x 50 x 50
cells long. In both cases space was uniformly discretised with a cell size of Az = 0.01 m, and
the maximum allowable time-step was chosen. The 2-D as well as the 3-D computational domains
were excited at their centers by imposing a soft source condition on the H, and E, components,

respectively. The excitation source was a Rayleigh pulse with significant frequency content up to
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3 GHz. Two different PML thicknesses were examined (4 and 12 layers) and the theoretical reflec-
tion coefficient was set equal to In R(0) = —12. A parabolic conductivity profile was used with
m = 4. After exciting the computational domain we let the waves propagate for a sufficient amount
of time-steps, and we calculated the total stored energy with respect to time. The corresponding
results are illustrated in Figs. 2.5(a) and 2.5(b), and evidently the uniaxial PML is very effective for

the truncation of an FDTD grid.
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CHAPTER 3

TWO DIMENSIONAL EXTENDED-CURL SCHEMES

3.1. Introduction

In this Chapter the development and analysis of a two-dimensional (2-D) FDTD based on an
extended-curl operator is presented. Our approach is motivated by the fact that Maxwell’s equa-
tions essentially propagate electromagnetic waves throuh the curl-curl operator, whose fundamental
element is the 2-D transverse Laplacian operator. Unfortunately, since FDTD works with Maxwell’s
equations in coupled curl form, the existence of this term is masked and hence its importance can be
easily neglected. Furthermore, it can be shown that the Yee algorithm, during a time-step, indirectly
approximates the “hidden” Laplacian term via a strongly anisotropic 5-point representation. As
demonstrated in Section 3.2, this is solely responsible for the scheme’s poor isotropy performance.
Consequently, amelioration of this problem is expected if the Laplacian term is approximated more
accurately. Obviously since the direct mapping of a Laplacian approximation into FDTD updating
is impossible, the goal is to improve the curl operator in FDTD in such a way that it yields indirectly
a “good” and “as isotropic as possible” transverse Laplacian.

The development presented here will proceed as follows: In Section 3.3 it is shown that in a
2-D space, only the curl operator that lies on the same plane with the transverse Laplacian needs to
be modified resulting in what we refer to as the extended curl operator. As further demonstrated in
Section 3.3, the latter allows mapping of any 9-point Laplacian onto FDTD update equations. The
scheme that corresponds to the most isotropic 9-point Laplacian is shown to be characterized by
superior isotropy, less dispersion, and a higher Courant number. Moreover, further experimentation
with the extended-curl schemes reveals that a unity Courant number can be supported (Section 3.5).

As a matter of fact there is an infinite number of extended-curl realizations that exhibit this feature.
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3.2. Motivation

The approach presented herein stems from the fact that Maxwell’s equations, in the case of a linear,
isotropic, and homogeneous medium, propagate electromagnetic waves essentially through the curl-

curl (V x V) operator as seen in the well-known vector wave equation:
VXxVxE=—ped’E (3.1

In the general case of a divergenceless field, the curl-curl operator can be separated explicitly into a

transverse Laplacian and cross terms. For instance, taking the z-component of (3.1) we have:
—pedy B, =(VxV XE), =0;(0; B, + 0,E,) — V2, E, (3.2)

It can be seen that the right hand side of (3.2) consists of two terms, one of which is a 2-D Laplacian,
transverse to the direction of the component under consideration. Therefore, it can be concluded that
the 2-D Laplacian is a fundamental element of the 3-D curl-curl operator, or that the 2-D Laplacian
is implicit in the two successive curl operations.

Here, we consider a two-dimensional space and a transverse, with respect to z, electric (TEz)
field polarization. (The same analysis can be carried out for the TMyz case as well.) For the 2-D
TEg case, the time-domain Maxwell’s equations are given by:

1

O E, = -i-asz (3.4)
OE, = —é@tz (3.5)

The most popular discrete approximation to this set of equations is the finite-difference time-domain
(FDTD) method introduced by Yee [1], and later expanded and refined by various researchers [2,29].
The method assumes a staggered field arrangement both in space and time; it employs second order

accurate central finite differences for the approximation of spatial derivatives, and the leap-frog
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scheme for time integration. The corresponding equations comprise what is referred to as the “Yee-

scheme” or conventional FDTD, and they are given by:

5 H n+1 1 i E n+1 B n+1 3.6)
et T\ Tl Ylivl+d '

+3 1 n+i
S By| | = -6,H,| (3.7)

l+§,] 3 7f+§7.7

+3 1 n+3
SeEy| * = —-6H| (3.8)

zv]+§ € 'L:]+§

where
Ul — U L

Opu; = 2Am 2 (3.9)

Due to the two-stage “time-marching” nature of the leap-frog scheme, equations (3.6), (3.7) and
(3.8) are referred to as the “FDTD update equations™ for conventional FDTD. Notice that in this
formulation Maxwell’s equations are treated as a first order system of two coupled curl equations.
Evidently, the existence of the Laplacian term is masked, meaning that the latter is not directly
computed during an FDTD calculation. Conceptually, the indirect generation of the Laplacian ap-
proximation means that the Yee-scheme Laplacian results by default and not by purposeful choice.
In what follows the accuracy of this approximation is examined.

Hence, let us examine the updating sequence during a time-step that leads to the computation
of the H, component. Notice that for this field mode, (V x Vx), reduces to V%y, since it has
been assumed that there is no variation along the z-direction. In order to get a better insight into
the above scenario, consider the graphical representation in Fig. 3.1. The FDTD formalism dictates
that the value of H, (z + %, J+ %) at the (n + 1)-th time-step is obtained as a sequence of two
curl operations, performed on magnetic and electric fields, respectively. Reffering to Fig. 3.1 and
going backwards in time, we see that H, (z + -é—, J+ %) is computed as a weighted sum of four

curling electric field components. This is because conventional FDTD approximates the curl oper-

ator component (V x E)_ through a four point discretization. In the same fashion, these electric
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Fig. 3.1: Curl-curl approximation in the Yee scheme.

field components are computed by two curling magnetic field components (not four since it has
been assumed no variation along the z-direction) at time-step n, with the one located at the center
contributing four times in total. Therefore, we can see that the variation of H, (z + %, i+ %) within
a time-step is determined by its spatial variation represented by a 2-D Laplacian, transverse to its

direction (z), where the Laplacian is approximated as:

1.1 1.1 3.1
2 . . . . , .
Vay H <Z+§>J+§) ~ — 4H, (z+§,a+§) + H, (z+§,y+§> +

.11 S S 11
(3.10)

Accordingly, it can be concluded that the four-point curl discretization performed by the Yee scheme

results in the strongly anisotropic five-point Laplacian approximation given by:

1
Vi, = ﬁ[_ Auij+ (Uigr; + Uio1; + i1 + Uz',j—l)} -
v 4 (3.11)
— (8 + o) wy + O (Y

where h is the spatial increment. The strong anisotropy of (3.11) is due to its leading error term
(LET); it exhibits dispersion properties dependent on the propagation angle and consequently in-

troduces anisotropically dispersion error into the computational domain. Given the above, it is
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1

Vi = g

[— 20u; 5 +

+4 (uigr1,j + i1y + U1 + uig—1) +

(3.13)
+ (Uig1,j41 + Uit1-1 + Ui—15-1 + Ui—l,j—H)] -
h 4 4
—EV Ui + O(h)

intuitively expected that superior FDTD accuracy could be achieved if a more accurate Laplacian
representation was employed. In what follows, first a more accurate version of the discrete Lapla-
cian is presented. Afterwards, it is demonstrated how the update equations should be modified, so

that the more accurate Laplacian representation is utilized.

3.3. Formulation

The approximation in (3.11) is a member of the family of 9-point Laplacian approximations whose

general form is given by [30], [31]:
V2 Ujj N Co Ui +
+o1 (Wig1,j + Uic1y + Uig41 + Uig-1) + (3.12)
+ ¢ (Wig1j+1 + Uig1j—1 + Uim1,j—1 + Uim1,5+1)
where ¢y, ¢; and co are arbitrary real numbers. It is easy to verify that the highest accuracy that

can be achieved from (3.12) is second order. However by judiciously choosing ¢, ¢; and ¢ one
can obtain the Laplacian approximation shown in (3.13). In particular the derivation of the above
requires us to first perform a 2-D Taylor expansion on (3.12). Then cg, ¢; and ¢y are subjected to
appropriately chosen conditions so that second order of accuracy is obtained, and the corresponding
LET turns out to be the biharmonic operator. The latter is highly desirable since it exhibits isotropic

dispersion properties.
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For the 9-point Laplacians’ family, the combination of cg, ¢; and co that yields the biharmonic
operator is unique. Moreover, the latter is the highest degree of isotropy that can be achieved. If a
higher degree of isotropy is required then widened Laplacian stencils must be employed. This will
be further elaborated later in this dissertation.

Let us now determine how to modify the update equations so that the 9-point Laplacian of
(3.13) is indirectly computed. Recall that the ultimate objective is to modify the update equations
so that the value of any H, component at any time-step is determined by nine appropriately weighted
H, components from the previous time-step. First the update equations’ stencil needs to be chosen
so that a 9-point Laplacian stencil is retrieved. There are two ways to achieve the above and these
are depicted in Figs. 3.2(a) and 3.2(b).

The first approach [Fig. 3.2(a)] is to retain a 4-point discretization, like the Yee-scheme sug-
gests, for the curl operation that results to an H, component update. However, for the update of
E, and Ey a flux averaging strategy is required in order to “reach out” for the diagonally located
H -s. With respect to Fig. 3.2(a) it can be seen that the £, component depicted by the thick arrow
is updated not only by the immediately neighboring H, components, but also by the ones defining
the flux in the upper and lower cells, with respect to the updated component’s vector direction (also
shown thick).

The second approach is shown in Fig. 3.2(b). In this case a complementary strategy is adopted:
for the updating of both the E, and E, components only the immediately neighboring H,-s are
used, similar to what the Yee scheme suggests. However, we modify the curl approximation that
lies on the same plane on which the Laplacian is defined (for this problem the z — y plane). This
modification suggests that the curl operator that results in an H, component update be longitudinally
extended. Essentially this is a longitudinal extension of the curl related derivatives, with respect to

the direction of the derived component, and it will be referred to as the extended-curl operator.
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Fig. 3.2: Update equations’ modification for a 9-point Laplacian representation. The thick arrows
indicate curl-related components between the first half time-step.
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The choice between the two approaches is made based upon their ability to provide physically
meaningful results. First of all, one notices that for this TE field configuration the magnetic Gauss’

law is exactly satisfied since:
oAV (ﬂH) =0 (8:5381170) -(0,0,uH;) =0 (3.14)

The above suggests that no matter how the I, update equation is modified in this 2-D space, mag-
netic flux conservation is always satisfied. In contrast, the modification of the electric field com-
ponents update equations is more restricted since it is not always guaranteed that electric flux is
preserved. Hence it becomes apparent that retaining the Yee algorithm update equations for E, and
E,, is a very convenient and accurate “tactic” since the electric flux conservation is automatically
satisfied [2], i.e.:

o (4.

n
%

+ 0y Dy
j

",) =0 (3.15)

i,J

2

which is the discretised version of the electric Gauss’ Law, i.e.:
0V-(eE)=0 3.16)

Bearing this in mind, it is obvious that the flux-averaging approach does not comply with the above
scenario. In particular, electric flux is not conserved and consequently its implementation will pro-
vide solutions infested by spurious solutions. In contrast, the extended-curl approach is in absolute
agreement with both of the Gauss’ Laws. Accordingly, this approach is followed for the develop-
ment of our scheme.

To complete the determination of the extended-curl operator its weights need to be specified.
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From the previous discussion the updating equation for H, is given by:

5Hn+1 1[3(6En+1 5En+1 )
Pl o U irzger T T ikl g
n+1 n+1
+a (@Em. L 0B 1) (3.17)
H3.0t3 +3.dts
n+1 n+1
+ 5 |0y By — 0, By
-3t} +3d-3

where o and 3 are arbitrary real numbers. Recall that for E; and E,, we resort to the standard
update equations, that is (3.7) and (3.8). Now, if we apply the sequence of these update equations
for a time-step cycle as depicted in Fig. 3.2(b), then the resulting Laplacian approximation of any
H_, component is given by:

1
VQuij ~ ﬁ[—llaui,j—k

+ (@ —20) (uig1,j + wi—1,j + Uijyr + uij—1) + (3.18)
+28 (Uit1,j41 + Wig1j-1 + Uim15-1 + 'U/H—l,j—l)}
where u;; = H, (i + %, 7+ %) The values of o and 3 for any desired Laplacian approximation are
given by equating like terms in (3.18) and (3.12). For instance (3.13) corresponds to the following

extended-curl weights:

—da = -20/6 a = 5/6
26 = 16 ¢=> g = 1/12
a—-20 = 4/6 a—28 = 4/6

/

where obviously the third equation is satisfied by the calculated values for o and 3.

To sum up, in this section a methodology was presented which via the utilization of an
extended-curl operator, allows us to map any 9-point Laplacian into FDTD update equations. The
reason that our analysis is developed based on the approximation shown in (3.13) is that the latter

is the most prominent 9-point Laplacian. However the same conclusions would have been drawn
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1 0 —2j&y Sy
G = 0 1 2j&; Sz (3.21)
—2j¢y Sy 2iCS: 1 — 4,¢ Sy Cr — 46:(:S2 0y
if the analysis was carried out with respect to any other 9-point representation. In what follows

the new family of schemes are further examined by studying their stability as well their dispersion

properties.

3.4. Stability and dispersion analysis

Let us consider first the scheme that corresponds to (3.13), that is the extended-curl operator
weighted with o = 5/6 and § = 1/12. In order to investigate the proposed scheme’s stability,
a 2-D unbounded, linear and homogeneous space is assumed. The time-step bound that ensures
stability can be obtained by employing a standard von Neumann analysis. This requires that spatial

discrete Fourier modes of the form:

ully = @ (hp by ) eI ibe Ry o) (3.19)

are substituted into the update equations (3.7), (3.8) and (3.17). k denotes the discrete wavenumber
which, for an ideal FDTD algorithm, should be equal to the physical wavenumber, k = w/c. The

resulting equations can be cast into the following matrix form:
vt = Go" (3.20)

~ fm Em R . e o
where " = {Eg E} H Y 2} is the field component vector, G is the amplification matrix given

in (3.21). Also,

At At
§w = Aw Cw = i hw (3.22)
and
Sy = sin (l;wA'w/Q) , Cy = o+ 28 cos (l;'wAw) (3.23)
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with w € {z,y}. The eigenvalues of the amplification matrix are the following:
AM=1 ds=1-20 %2y -0 + 72 (3.24)

where ¥ = £, (, S2Cy + & ¢y SS C,. The scheme is stable if all eigenvalues lie within the unit

circle. This condition is satisfied when the time-step is subjected to the following constraint:

-1

S2C 52Cy
< xr Y Y
At < |ec \/ 2 + yQ) (3.25)

where ¢ = 1/,/ep is the speed of light in the material being modeled. The CFL condition is
obtained if in the above inequality we set Az = Ay = h, and substitute the maximum value of
S2 C, and Sg Cy. Thus:

At < ! h

V2 (e=28)c¢

where we recall that « = 5/6 and 3 = 1/12 for our scheme. Notice that if we had chosen («, 3) =

? (3.20)

ol

(1,0) we would recover the standard FDTD curl, and (3.26) would yield the Courant limit of the
conventional 2-D FDTD scheme, i.e. S = v/2 /2.
The dispersion relation can be derived if we assume discrete temporal Fourier modes in (3.19),

in addition to the spatial ones, or: 7" = ue!“™Af. Hence (3.20) yields the following eigenvalue

problem: ) S -
S, 0 —£S, E?
0 S &S EQ | =0 (3.27)
~¢ySyCe C:S:Cy S H?

where S; = sin(wAt/2). For non-trivial solutions of (3.27), the determinant of the system matrix

must be zero. Hence, after some straightforward manipulations, the dispersion relation for the
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scheme is found to be:
- 2
1 . [wAt\]? 1 . [ kAz ~
[‘&E(T>] - [E‘S‘“( 2 )} [“+2ﬁC°S(’“yAy)]
1 N
=g y2Y
Lon (52

If we Taylor expand (3.28) with respect to both the temporal and spatial variables, the scheme’s

(3.28)
_|_

[a + 20 cos (I;:mAx)

accuracy can be obtained. Hence we have:

w\ 2 - -
(E) +O(A2) = B2+ B2 -
1

12
+ 0 (Az*) + O (AyY)

|Az? kS + AP kg + (A2® + Ay?) R2RZ) + (3.29)

Obviously the scheme is second order accurate both in space and time. However, if we write the
wavevector in polar form as (ks, I%y) = k(cos ¢, sin ¢) and further assume a uniform discretization,

then the spatial LET in (3.29) yields:
- - o - - o\ 2 .
LET = 0? (K + Ky + 2k282) = 02 (B2 + &2) = n2k*
Evidently, the LET in (3.29) is independent of the propagation angle, meaning that the scheme may
be second order accurate but it is fourth order isotropic. For comparison purposes, the approxima-

tion to the constraint equation obtained by the Yee-scheme is given by (3.28)if weseta =1, 3 =0

and then Taylor expand. One gets:

W\ 2 ~ ~
() + o) = R+ &
¢ (3.30)
1
12
where in this case, the spatial LET strongly depends on the direction of propagation as:

(As2K: + Ag?RE) + O (Aat) + O (ay")
LET = A2 (lég + 123) = h2k* (cos* ¢ + sin? )

Also, in the limit of a very fine discretization (Az — 0, Ay — 0), (3.29) reduces to the con-

straint equation that governs the propagation of a monochromatic wave in a general 2-D medium. At
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this point it should be mentioned that the same order of isotropy as the one demonstrated in (3.29),
can be achieved by FDTD implementations on hexagonal grids as has been demonstrated in Liu
in [10] and Xiao in [11]. However, the distinct feature of the proposed algorithm is that it retains
the simplicity of the Yee-scheme. Thus it is relatively painless to implement existing techniques
designed for the Yee-scheme such as absorbing boundary conditions, whereas on a hexagonal grid

this is not a trivial task.

3.5. Extended-curl realizations for a higher Courant number

The preceding analysis revealed that the extended-curl scheme corresponding to the isotropic 9-
point Laplacian is characterized by a more relaxed Courant limit, approximately 1.2 times higher
than that of the Yee scheme. In what follows the highest achievable Courant number is investigated,
assuming « and (3 are arbitrary real numbers. More precisely, we are looking for 9-point Laplacian
approximations that result in extended-curl schemes with Courant number higher than S = 1/3/2.
For reasons that will become clear later in our discussion, let us first examine if a unity Courant

number can be achieved. S = 1 implies that:

At

IN
ol

(3.31

ols

< 1
mase /826, + 836, )

which leads to the constraint:

2 2
%%{,/Sw Cy+ 52 Cgc} <1 (3.32)

Now, if we Taylor expand (3.28) we get:

(%)2 + O (At?) = (o + 28) (k?c + 125) + 0 (Az?) + O (Ay?) (3.33)
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Fig. 3.3: Determination of parameters « and (3.

The above relation in the limit of a vanishing cell size, should reduce to the constraint equation of a

continuous medium, therefore the following condition should hold:
a+28=1 (3.34)
Given this condition, it is straightforward to show that [Section 3.9]:

2 2 — _
max {Sm Cy+ S Cm} = max 1,2 — 84) (3.35)

If we substitute the above into (3.32) and additionally assume that the square rooted quantity must

be positive, we get the following constraint:
1/8 < B <1/4 (3.36)

The system of (3.34) and (3.36) can be solved graphically as shown in Fig. 3.3. The solution pairs
lie along the solid line section C'D, bounded by the dotted and dashed lines which means that for
this continuum of « and 3 values, a Courant number S = 1 can be achieved. We refer to this group
of extended-curl realizations as the “unity Courant number” schemes. As demonstrated later, there
exists an optimum (q, 3) pair, and determined by the scheme’s dispersion properties as well as the

scheme’s ability to provide realistic results.
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Fig. 3.4: Alternative extended-curl realization.

Before proceeding to the next Section some remarks should be made. First, regarding the
generalization of the results presented thus far, we observe that (3.28) is the numerical dispersion
relation that characterizes all members of the extended-curl family including the “unity Courant
number” schemes. Similarly, the general time-step bound valid for all extended-curl realizations is

the following:
t < = h
\/mﬂax{l,2 - 88} ¢

For instance, if 3 = 0 the CFL condition for the Yee-scheme is obtained. The above expression

A

(3.37)

reveals that the extended-curl family of schemes cannot support Courant numbers that exceed unity.
Clearly, for a Courant number higher than one, the condition mgx {1,2 — 88} < 1 should hold,
which obviously is impossible.

The last remark can be also justified from the following reasoning. An alternative, although
absolutely equivalent, way to interpret the extended curl schemes is as a combination of two Yee
schemes. As illustrated in Fig. 3.4 the first one operates on a standard Cartesian grid comprised of
square cells with size h. The second one exists on a 7 /4-rotated Cartesian grid, that consists of

rhombic-cells with size /2. The two grids are positioned so that each square cell of the Cartesian
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grid is inscribed into a thombic cell. A rigorous justification of the above is provided by the fact

that an alternative representation of (3.18) is given by [31]:
V2 Ui ~

L @20 (U1 — Uiy Ui — Ui1g 4 (W T Mg WG T Yo |
h h h h h

n Qﬂ (ui+17j+1 — U _ U5 — u,-_l,j_1> + (Ui—l,j—i-l — U5 _ Ui 5 — Ui+1,j—1>
h/2 hv/2 hV/2 hv/2 hv/2

(3.38)

If we correspond u; j to H, (i + %, i+ %) then the terms in the first pair of square-brackets represent
four discrete curl-operations which result in four electric field components that lie on the x — y
plane, in a closed-loop, circulating formation. These curl operations are performed on a Cartesian
grid with cell size h, as indicated by the denominators of the corresponding terms. Regarding to the
terms in the second pair of square brackets we can conclude that they are a 7 /4-rotated version of
the first ones from their corresponding finite difference stencil. In addition their denominators reveal
that the cell size is hv/2. Consequently, given that the maximum time-step for the Yee-scheme, on a
uniform grid is At = %, then the same time-step for a cell size of hv/2 becomes At = % which

for a uniform Cartesian grid corresponds to a unity Courant number.

3.6. Anisotropy and dispersion error

In this section the phase velocity isotropy as well the dispersion error of the most representative
extended-curl schemes are examined. These are the Yee-scheme, the most isotropic Laplacian
scheme, and two of the unity-Courant-number schemes, corresponding to points D and C of Fig. 3.3.
Their properties are summarized in Table 3.1. In order to examine the numerical phase velocity be-

havior versus propagation angle, it is required to substitute (l%x, I~cy) =k (cos ¢, sin ¢) in (3.28),
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Table 3.1: Comparison of the most representative extended-curl realizations.

Case (e, B) S (co,¢1,€2) LET
1 (Yee scheme) (1,0) | ¥ | (-41,0) |V*-28,
2 (The most isotropic Laplacian) | (2, &) @ (-8,2 4 %
3 (Point D in Fig. 3.3) (3,%) 1 (-3,3,3) | V*+8%,
4 (Point C in Fig. 3.3) (2,%) 1 (—2,0,3) | V*+48%,

and then to solve iteratively the resulting transcendental equation with respect to the numerical
wavenumber k. Finally, the numerical phase velocity can be computed as: o, = w/ k.

The corresponding results for a discretization of A/10, and using the Courant stability limit are
depicted in Fig. 3.5. There is a one-to-one correspondence between the form of the LET shown in
the last column of Table 3.1 and the schemes’ isotropy performance. More precisely the bigger the
number of cross-terms agy by which the LET deviates from the biharmonic operator, the worse the
isotropy becomes. The dashed line (Case 2) exhibits highly isotropic phase velocity characteristics
corresponding to the most isotropic Laplacian approximation. In the inset figure, there is a more
detailed illustration of the phase velocity behavior for this case. It does fluctuate as a function of
the propagation angle, however the amplitude of this ripple is of the order of 10~%. Furthermore,
the dash-dotted-square-marker line (Case 3) is more isotropic compared to the conventional FDTD
scheme of Case 1, but less isotropic than Case 2. Nevertheless, this scheme has the distinguishing
characteristic that for propagation along the principal axes (¢ = 0°,90°) the “magic time-step”
condition [2,32] is satisfied, meaning that At = h/c and the dispersion error is totally eliminated
for all frequencies. It is interesting to note that the schemes that correspond to Cases 1 and 3
exhibit complementary anisotropy characteristics, with Case 3 being overall more isotropic. Finally,
Case 4 exhibits the most anisotropic phase velocity, and in particular, the value of the phase velocity

minimum at ¢ = 45° has been significantly decreased, compare to Case 3. Not only does this
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severely deteriorate the scheme’s isotropy but it also has a detrimental effect on the dispersion error
as shown next.
A practical measure of the scheme’s performance with respect to the dispersion error reduction

is the maximum absolute phase error per wavelength, defined as:

"/’=360°m£x{> _ %

C

} (3.39)

In Fig. 3.6 the dispersion error for the four cases is illustrated as a function of the number of cells
per wavelength (N = h/\). Clearly all schemes are second order accurate since the slope of each
one is -2. Moreover, Cases 2 and 3 suffer less from dispersion errors than conventional FDTD.
In contrast Case 4 as expected from the previous analysis exhibits the worst dispersion character-
istics. At this point it can be asserted that Cases 3 and 4 correspond to the best and worst “unity
Courant number” schemes, respectively. All other combinations of («, 3) pairs exhibit isotropy and
dispersion characteristics within the performance bounds defined by Cases 3 and 4.

In Fig. 3.7 the anisotropy error for each case is plotted as a function of resolution N,. We

have chosen to define the anisotropy error as the difference between the maximum and minimum
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Fig. 3.6: Maximum dispersion error.

value of 0, relative to the speed of light c. It can be seen that as (3.29) predicts, the Case 2 scheme
exhibits fourth order anisotropy error, in contrast to the other three schemes, which are second order
isotropic.

Now, let us further examine the behavior of the “unity Courant number” schemes for different
values of the (a, 3) pair, that lie on the C' D section of Fig. 3.3. The analysis in the last paragraph of
the previous section revealed that an equivalent expression for the update equation of H,(i+ %, Jj+ %)

is given in the following form:

n+1
n+1 1
SeH,| | = —|(a=28)(VxE)[*+48(V x E)[7 Ve (3.40)
+5.7t3 H ) )
2 i+3,5+3

Apparently, this is a linear combination of two flux terms: one defined on a regular FDTD
grid, and a second one defined on a 7/4-rotated version. These are denoted as (V x E)Zee and
(V x E)Z"t_yee respectively. Hence, at point D we have: o — 20 = 483 = %— This condition
indicates that the two flux terms in (3.40) contribute equally. However, as we move from D to C, or
equivalently as a — 20, the Yee flux term gradually vanishes, while the other term increases. In the

limit, at point C, the flux is due entirely to the rthombic-cell grid arrangement. This scheme, based
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Fig. 3.7: Anisotropy error.

solely on a 7 /4-rotated square cell, has been shown to be equivalent to a finite-difference scheme
developed on a staggered collocated grid [33,34]. The detrimental characteristic of the latter is that
when excited by localized sources, it suffers from grid-decoupling [10,33]. Consequently, from the
“unity Courant number” schemes, the choice of (o, 3) = (3/4,1/8) is optimal, not only because
it renders the most isotropic and the least dispersive scheme, but in addition because it prevents the

development of the non-physical grid-decoupling effect.

3.7. Some remarks on the conservation properties of the extended curl scheme

Some interesting conclusions, regarding the scheme’s charge conservation properties, can be drawn
from the numerical dispersion matrix shown in (3.27). The following approach was initially imple-

mented by Marcysiak and Gwarek in [35]. Hence, from the first two equations we have:

= (3.41)
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Then if we add the above two equations, we get:

S (& So BY + &8, BY) = 0 (3.42)
or
1 (wAt\ |1 . (kAz) 1 . (kAy\ oo
—A—tsm<—2—> Esm( 5 >€Ex+zzsm< 5 eby| =0 (3.43)

Now, given the following Fourier pairs

2j . [ kzAz
F{b:} — —x, S < 5 ) (3.44)
and
2j . [wAt
F{o:} — I (—2—> (3.45)

we can conclude that (3.43) is the spatio-temporal Fourier transform of (3.15). Consequently with
the aid of the numerical dispersion matrix, we have verified the conservative nature of the scheme.
Let us now examine the conservation properties of the flux-averaging scheme using the previ-

ous approach. The numerical dispersion relation in matrix form for this scheme is given by:

S, 0 —&5,Cs EQ

-~

“Cy Sy Qm Sw St ﬁ,(z)

Again, by combining the first two equations we obtain:

Kx— Sin < B > 6E:t + -A—y sin <—-2—— EEy =
2B . k.Ax\ . [ k,Ay - - ~0
= Rzdg s1n( 5 ) sin ( 5 [cos (sz:c) — Cos (kyAy)] .

Obviously, the flux averaging scheme is not conservative. From the right hand side of the above

(3.47)

equation, we can see that the unbalanced charge is a function of both the frequency of operation as
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well as the propagation angle. The behavior of the residual term is better revealed by examining its

Taylor expansion when Az = Ay = h — 0. Itis

B~

RHS = Sk  k, (k2 + k2) 2 + O (r* (3.48)
) T Yy

It can be seen that the excess charge is by no means negligible, and as a matter of fact it is on
the order of the numerical error. This last result is an accurate quantitative measure of the artificial
charge that the scheme generates, and it can be used as a criterion to determine whether the algorithm

is appropriate for a given application.

3.8. Numerical Examples
3.8.1. Free space propagation

In this section preliminary numerical results are presented to support the previously discussed anal-
ysis. A 2-D domain 2 m X 2 m, that lies on the  — y plane, is considered. The domain is uniformly
discretized using a cell size of Az = 1 cm. The computational domain consists of 200 x 200 cells,
and a twelve-cell-thick uniaxial PML is placed around it. A TE field configuration is excited by
injecting a z-directed magnetic field at the center of the domain with a differentiated Gaussian pulse
time dependence. We let the cylindrical waves propagate and probe the time history of H, at two
equidistant points, with respect to the excitation point, one along the principal axis (¢ = 0°) and
one along the domain’s diagonal (¢ = 45°). Simulations are performed for Cases 1 and 2 and the
corresponding results are shown in Figs. 3.8(a)-3.8(b). As expected, Case 2 is significantly more
isotropic and so the pulse distortion due to dispersion errors is less severe. Also in Figs. 3.9(a) and

3.9(b) there are contour plots of the propagating pulse for the two Cases.
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Fig. 3.9: Contour plots of pulse propagation in a 2-D domain with TEz fields. (a) Case 1. (b) Case 2.
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Fig. 3.10: Resonant frequency prediction error.

3.8.2. Cavity resonances

In this numerical experiment, we calculate the resonances of a rectangular cavity whose bound-
aries correspond to perfect electric conductors (i x E = 0). The dimensions of the cavity are
0.0615 m x 0.027 m, and it is uniformly discretized with a 41 x 18 grid. Simulations were per-
formed using the Yee and the Case 2 schemes. In all simulations the maximum allowable time-step
was used. The TEz mode is excited in the cavity by injecting a z-directed magnetic field at its center
with a very sharp differentiated Gaussian pulse time dependence.

A sufficient amount of time-steps are executed so that a 1 MHz frequency resolution is
achieved. Where applicable, image theory is applied for the boundary treatment. In Fig. 3.10
the algebraic relative error is illustrated for the first 20 resonant frequencies as computed by the two
schemes against the corresponding analytic values. It is observed that both schemes underestimate
the resonances’ values, with the Case 2 scheme being less dispersive as expected. Also, the detri-

mental effects of anisotropy can be observed in the Yee scheme predictions, where accuracy depends
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Fig. 3.11: 2-D cavity resonances. (a) Case 1 (Yee). (b) Case 2.
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Table 3.2: L9 error comparisons for radiation pattern predictions.

Yee Case 2
d=25X10.1011 | 0.0528
d=55A|0.1513 | 0.0873

on propagation directions, and thus is bounded according to the highest and lowest achievable phase

velocity in the grid.

3.8.3. Radiation pattern

In this subsection we calculate the radiation pattern of two infinite line sources. The sources extend
to infinity along the z-axis, they are located symmetrically with respect to the origin along the y-
axis, and they are uniformly excited. Given that the distance between the two sources is d then the

total magnetic field at a distance p in the far-field is given by:

. _'ﬂ
H=-a, %n A/ ;—% e—J\//_)—p [2 cos (%ﬁ sin q§>} (3.49)

Notice that if we choose (3d/2 to be odd multiples of 7/2, then at ¢ = 7/2 and ¢ = 37/2 the
radiation pattern of this structure exhibits nulls. Now, when trying to model this configuration in
FDTD, the destructive interference between the two sources along the direction of the nulls, is not
exactly predicted due to dispersion. This implies that the radiation pattern for these angles does not
vanish but exhibits some finite value. Moreover, if the distance between the sources is electrically
large, in the direction of the nulls the radiation pattern exhibits minor lobes whose maximum values
can be comparable to that of the actual pattern.

The above scenario was modeled using both the Yee algorithm as well as the Case 2 scheme.
A relatively coarse discretization of A\/6 was chosen, and two different distances from the source

were examined, namely 2.5 A and 5.5 A. The excitation of the domain is realized by imposing a soft
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Analytical

(b) Relative distance d = 5.5 \.

Fig. 3.12: Radiation pattern predictions of two infinite current sources uniformly excited. Dis-
cretization h = \/6.
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source condition on the appropriate H, components. Since this is a single frequency problem we
can take advantage of the isotropic properties of the Case 2 numerical velocity, and so we optimized
it with respect to the dispersion error at the particular frequency of interest. This was achieved by
setting the numerical wave vector equal to its exact value along some direction. This can be realized
by appropriately scaling the free space material properties. The corresponding radiation patterns
are shown in Figs. 3.12(a) and 3.12(b). It can be seen that along ¢ = n/2 and ¢ = 37/2 the Yee
scheme exhibits a spurious minor lobe while the Case 2 scheme does not. Also in the L, error sense,

the Case 2 scheme outperform the Yee scheme as indicated in Table 3.2.

3.8.4. Waveguide propagation constant

In this example a parallel plate waveguide is modeled. The T'E, mode is excited by injecting a
z-directed magnetic field, with a very sharp differentiated Gaussian pulse time dependence. The
dimensions of the waveguide are 13 cm by 50 cm, and the cell size is set equal to 1 cm. The
propagation constant information is extracted using the following procedure. The time-history of
the electric field component E, is observed along two transverse planes separated by a distance d.
Then, the above quantities are Fourier-transformed, and the information for each excited mode is

obtained by utilizing the orthogonality properties of the field eigenfunctions, that is:

. d .
nTT\ _: mnT _
B, = _Jk_fA" COS <T) L =>/O E, cos( y )d:c = —Jk—fAnwémne 1By (3.50)

Then, we divide the integrated quantities for the two observation planes and the ratio is equal to
e~384_ and hence the values of /3 can be easily extracted. The propagation constant of the first seven
modes are computed using the Yee, the Case 2, and the Case 3 scheme. The corresponding results
are shown in Figs. 3.13(a)-3.13(b) and Fig. 3.14. It can be seen that the results corresponding to the
Case 2 and especially the Case 3 scheme, are in better agreement to the theoretical expected ones

than are the results obtained by the Yee scheme.
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